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Old news
From small to large scales

Independent lines of evidence, on a range of scales, suggest
that there is more matter than expected, dark matter,

or that
gravity is different, modified gravity.

After all, evidence for dark matter is inferred through gravity,
so second option is still a possibility.

Disregarding for now the intriguing, but controversial,
inconclusive case of discrepant velocities of widely separated
(kAU) binary stars, higher than expected in Newtonian
gravity, the first evidence is galactic.
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Old news
Galactic evidence of an unknown

Rather than a Keplerian decline in the outskirts,

expected
when all matter has been encompassed,
v2/r = GM/r2 ⇒ v2 = GM/r , velocities of stars and gas in
spiral galaxies are found to asymptote to a constant v → v∞.

Unexpected unless there is more mass, the dark matter halo
extending well beyond the disk, arranged such that M(r) → r ,
cancelling the dependence of v2 on r in the denominator, and
hence v2 → v2∞,
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Old news
Galactic regularity: baryonic Tully-Fisher relation

It turns out that v∞
can be inferred from
just the baryonic mass
of the galaxy Mb,

implying a non-trivial
relation between the
baryonic and dark
matter distribution.

There is evidence that
v4∞ ∝ Mb.
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Figure: Power-law relation between v∞ and
Mb. Slope consistent with 4. (Lelli et al.,
2019)



Old news
Galactic regularity: baryonic Tully-Fisher relation

It turns out that v∞
can be inferred from
just the baryonic mass
of the galaxy Mb,
implying a non-trivial
relation between the
baryonic and dark
matter distribution.

There is evidence that
v4∞ ∝ Mb.

1.0 1.5 2.0 2.5 3.0

log(Vf) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

123 galaxies

σ =0. 026± 0. 007

s=3. 85± 0. 09

I=1. 99± 0. 18

1.0 1.5 2.0 2.5 3.0

log(WP20/2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

148 galaxies

σ =0. 035± 0. 005

s=3. 75± 0. 08

I=1. 99± 0. 18

1.0 1.5 2.0 2.5 3.0

log(WM50/2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

125 galaxies

σ =0. 035± 0. 006

s=3. 62± 0. 09

I=2. 33± 0. 20

1.0 1.5 2.0 2.5 3.0

log(Vmax) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

153 galaxies

σ =0. 040± 0. 006

s=3. 52± 0. 07

I=2. 59± 0. 15

1.0 1.5 2.0 2.5 3.0

log(V2Re
) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

142 galaxies

σ =0. 054± 0. 006

s=3. 14± 0. 08

I=3. 54± 0. 16

1.0 1.5 2.0 2.5 3.0

log(V2. 2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

148 galaxies

σ =0. 070± 0. 007

s=3. 06± 0. 08

I=3. 75± 0. 17

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

Figure: Power-law relation between v∞ and
Mb. Slope consistent with 4. (Lelli et al.,
2019)



Old news
Galactic regularity: baryonic Tully-Fisher relation

It turns out that v∞
can be inferred from
just the baryonic mass
of the galaxy Mb,
implying a non-trivial
relation between the
baryonic and dark
matter distribution.

There is evidence that
v4∞ ∝ Mb.

1.0 1.5 2.0 2.5 3.0

log(Vf) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

123 galaxies

σ =0. 026± 0. 007

s=3. 85± 0. 09

I=1. 99± 0. 18

1.0 1.5 2.0 2.5 3.0

log(WP20/2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

148 galaxies

σ =0. 035± 0. 005

s=3. 75± 0. 08

I=1. 99± 0. 18

1.0 1.5 2.0 2.5 3.0

log(WM50/2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

125 galaxies

σ =0. 035± 0. 006

s=3. 62± 0. 09

I=2. 33± 0. 20

1.0 1.5 2.0 2.5 3.0

log(Vmax) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

153 galaxies

σ =0. 040± 0. 006

s=3. 52± 0. 07

I=2. 59± 0. 15

1.0 1.5 2.0 2.5 3.0

log(V2Re
) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

142 galaxies

σ =0. 054± 0. 006

s=3. 14± 0. 08

I=3. 54± 0. 16

1.0 1.5 2.0 2.5 3.0

log(V2. 2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

148 galaxies

σ =0. 070± 0. 007

s=3. 06± 0. 08

I=3. 75± 0. 17

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

Figure: Power-law relation between v∞ and
Mb. Slope consistent with 4. (Lelli et al.,
2019)



Old news
Galactic regularity: baryonic Tully-Fisher relation

It turns out that v∞
can be inferred from
just the baryonic mass
of the galaxy Mb,
implying a non-trivial
relation between the
baryonic and dark
matter distribution.

There is evidence that
v4∞ ∝ Mb.

1.0 1.5 2.0 2.5 3.0

log(Vf) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

123 galaxies

σ =0. 026± 0. 007

s=3. 85± 0. 09

I=1. 99± 0. 18

1.0 1.5 2.0 2.5 3.0

log(WP20/2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

148 galaxies

σ =0. 035± 0. 005

s=3. 75± 0. 08

I=1. 99± 0. 18

1.0 1.5 2.0 2.5 3.0

log(WM50/2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

125 galaxies

σ =0. 035± 0. 006

s=3. 62± 0. 09

I=2. 33± 0. 20

1.0 1.5 2.0 2.5 3.0

log(Vmax) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

153 galaxies

σ =0. 040± 0. 006

s=3. 52± 0. 07

I=2. 59± 0. 15

1.0 1.5 2.0 2.5 3.0

log(V2Re
) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

142 galaxies

σ =0. 054± 0. 006

s=3. 14± 0. 08

I=3. 54± 0. 16

1.0 1.5 2.0 2.5 3.0

log(V2. 2) [kms−1]

7

8

9

10

11

12

lo
g(
M

b
)
[M

¯
]

148 galaxies

σ =0. 070± 0. 007

s=3. 06± 0. 08

I=3. 75± 0. 17

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

0.0

0.5

1.0
Fg

Figure: Power-law relation between v∞ and
Mb. Slope consistent with 4. (Lelli et al.,
2019)



News interruption: The MOND proposal

This is natural in Modified Newtonian Dynamics (MOND).

There is another way to cancel the r in the denominator of
the gravitational acceleration GM/r2 = aobs = v2/r .

To take a square root.

So for very low accelerations aobs =
√
aN . For units to match,

must introduce a new scale a0 and have aobs =
√
a0aN .

a0 sets the scale of transition to MOND behaviour
(a0 ≈ 1.2 · 10−10m · s−2).

Then aobs =
√
a0
√
GMb/r2 =

√
a0GMb/r = v2∞/r ⇒ v2∞ =√

a0GMb.

Squaring again find that v4∞ = (a0G )Mb, the baryonic
Tully-Fisher relation, with the constant now identified!
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The non-relativistic field equation of MOND

What could the non-relativistic field equation look like?

∇2ΦN = ∇ · (∇ΦN) = ∇ · aN = 4πGρb

In MOND, we must have that |aobs| =
√
a0
√
|aN | or squaring,

|aobs|aobs = a0aN

But aobs = ∇Φ, so substituting

|∇Φ|∇Φ = a0aN

and taking the divergence, gives

∇ · (|∇Φ|∇Φ) = a0∇ · aN = a04πGρb, or

∇ · (|∇Φ|/a0∇Φ) = 4πGρb, a modified Poisson equation.

To interpolate between MOND behaviour we introduce an
interpolating function µ so that generally

∇ · (µ (|∇Φ|/a0)∇Φ) = 4πGρb

where µ(x) → x for low accelerations x ≪ 1 and µ(x) → 1 for
x ≫ 1.
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The Lagrangian

Is there a Lagrangian for

∇ ·
(
µ

( |∇Φ|
a0

)
∇Φ

)
= 4πGρb?

Yes! The a-quadratic Lagrangian (AQUAL)

L = J
(
(∇Φ · ∇Φ) /a20

)
+ 4πGρbΦ

leads to the field equation when J ′(x) = µ(x) (J is the
integral of µ).

Then one can rest assured that momentum and energy
conservation is satisfied.

Another approach to getting the equations is to have a
hierarchy such that ΦN satisfies the Poisson equation and
enforce an algebraic relation between ∇Φ and ∇ΦN

(QUMOND).
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v 4
∞ = a0GMb is not all. Diversity of rotation curves.
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approach to v∞.
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tracks trend of
baryonic
contribution.
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Old news.
Additional galactic regularity: the Radial Acceleration Relation (RAR)

Observational support
for MOND most
clearly illustrated by
the Radial
Acceleration Relation.

Accelerations in
diverse galaxies land,
with small scatter, on
the same 1-1 relation
with the acceleration
expected from the
baryons alone, i.e.,
there is an algebraic
relation.
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Figure: The baryons alone predict the
dynamics (153 LTG) (Lelli et al., 2019).
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Recent news.
Additional regularity: the radial acceleration relation (RAR) extended

Baryonic (stars+cold gas) radial acceleration log(gbar [h70 m/s2])
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Figure: RAR extended by weak lensing
agrees with deep MOND behaviour (slope
1/2) (Brouwer et al., 2019).

Recently, the Radial
Acceleration Relation
has been extended by
orders of magnitude
using weak lensing.

Signal of ∼ 105 lenses
(KiDS and GAMA) of
isolated late-type and
early-type galaxies,
stacked.

Consistent with
MOND behaviour
persisting!
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Not-so-old news. To larger scales: galaxy clusters

Relaxed galaxy clusters are modelled as gaseous spherically
symmetric configurations in hydrostatic equilibrium ∇p = ∇Φ.

Most of the baryonic mass is in X-ray emitting gas.

Potential can be derived using

velocity dispersion of galactic population (via virial theorem),
weak and strong lensing,
thermal Sunyaev-Zeldovich effect (distortion of CMB
proportional to line-of-sight integral of electron pressure,
pressure related to potential by hydrostatic eq.),
X-ray bremsstrahlung luminosity and temperature (giving
combination of density and temperature hence pressure, hence
potential).
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Not-so-old news. To larger scales: galaxy clusters
A Radial Acceleration Relation for galaxy clusters? Conflicts.

Combining tSZ
observations and
X-ray observations for
five nearby galaxy
clusters,

Eckert et al.
have found a RAR for
galaxy clusters in
conflict with the
galactic RAR.

Accelerations mostly
larger than the
galactic RAR, hence
stronger gravity or
missing matter.
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Figure: The RAR of galaxy clusters (tSZ
and X-ray obs.) departs from the galactic
RAR (Eckert et al., 2022).
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Not-so-old news. To larger scales: galaxy clusters
A Radial Acceleration Relation for galaxy clusters? Conflicts.

Using weak and
strong lensing data
Tian et al. have
found that MOND
could work,

but with
a0 → 17a0 for galaxy
clusters alone.
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Eq.1 from Spiral Galaxies HMcGaugh et al. 2016L
lnHgtotL=0.51lnHgbarL-9.80 HMCMCL
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Figure: RAR of galaxy clusters
inferred from lensing also departs
from galactic RAR. (Tian et al.,
2020)
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Known to you.
Largest scales, cosmology, CMB and LSS

Best fit model from CMB and LSS is flat ΛCDM model with
ΩCDM ≈ 5Ωb.

Tightly constrained dust-like (pressureless) behaviour: energy
density decays as a−3, negligible speed of sound cs .
Need relativistic theory to address.
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Figure: Left: Planck angular power spectrum. (Aghanim et al., 2018).
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Relativistic extensions of Modified Newtonian Dynamics

Modifying the Poisson equation ∇2Φ = 4πGρb to have a
MOND limit was in retrospect straightforward:

∇ · (µ (|∇Φ|/a0)∇Φ) = 4πGρb.

This theory is clearly non-relativistic: It has only spatial
derivatives ∇Φ. A relativistic theory would necessarily involve
time derivatives ∂Φ/∂t (symmetrically).

A natural starting point, to not spoil all the successes of
general relativity, is to have a metric theory, involving gµν .

Just as general relativity reduces to Newtonian gravity in the
weak-field, slow-motion (v ≪ c) regime, so we need to find a
theory whose weak-field, slow motion and low acceleration
regime a ≪ a0 is governed by MOND.
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Relativistic extensions of Modified Newtonian Dynamics

The road to general relativity was not a simple promotion of
gradients ∇

to four-derivatives ∂i and Laplacians ∇2 to
d’Alembertians □ = ηµν∂µ∂ν involving only the potential Φ.

In general relativity, the potential Φ is only the diagonal part
of the larger metric tensor gµν : g00 = −1 + 2Φ, gii = 1 + 2Φ.
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Relativistic extensions of Modified Newtonian Dynamics
Enter Aether-Scalar-Tensor theory (AeST)

Motivated by the need to have a theory that

has a MOND limit for |∇Φ| < a0,
is GR-like for large accelerations |∇Φ| ≫ a0, strong
field-regime,
is consistent with observations of CMB anisotropies and of
large scale structure,
has gravitational waves that travel at light speed,
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Relativistic extensions of Modified Newtonian Dynamics
Enter Aether-Scalar-Tensor theory (AeST)

Skordis and Z lośnik (2020) proposed such a theory (called
Aether-Scalar-Tensor theory)

with a unit time-like vector field
Aµ, a scalar field ϕ, and a metric/tensor gµν .

Defining kinetic terms for the scalar field along the direction
of Aµ: Q = ∇µϕA

µ, perpendicular to Aµ:
Y = ∇µϕ∇νϕ(gµν + AµAν) and the projected vector field
gradient Jµ = Aα (∇αA

µ) it reads

LAeST =R − KB

2
FµνFµν + 2(2 − KB)Jµ∇µϕ

− (2 − KB)Y − F(Y,Q) − λ(AµAµ + 1) (1)

where R is the Ricci scalar, KB is a coupling constant,
Fµν = ∇µAν −∇νAµ is the field strength, F is a free function
and λ is a Lagrange multipler that imposes the unit time-like
constraint: AµAµ = gµνA

µAν = −1.
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Skordis and Z lośnik (2020) proposed such a theory (called
Aether-Scalar-Tensor theory) with a unit time-like vector field
Aµ, a scalar field ϕ, and a metric/tensor gµν .

Defining kinetic terms for the scalar field along the direction
of Aµ:

Q = ∇µϕA
µ, perpendicular to Aµ:

Y = ∇µϕ∇νϕ(gµν + AµAν) and the projected vector field
gradient Jµ = Aα (∇αA

µ) it reads

LAeST =R − KB

2
FµνFµν + 2(2 − KB)Jµ∇µϕ

− (2 − KB)Y − F(Y,Q) − λ(AµAµ + 1) (1)

where R is the Ricci scalar, KB is a coupling constant,
Fµν = ∇µAν −∇νAµ is the field strength, F is a free function
and λ is a Lagrange multipler that imposes the unit time-like
constraint: AµAµ = gµνA

µAν = −1.



Relativistic extensions of Modified Newtonian Dynamics
Enter Aether-Scalar-Tensor theory (AeST)
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Skordis and Z lośnik (2020) proposed such a theory (called
Aether-Scalar-Tensor theory) with a unit time-like vector field
Aµ, a scalar field ϕ, and a metric/tensor gµν .

Defining kinetic terms for the scalar field along the direction
of Aµ: Q = ∇µϕA

µ, perpendicular to Aµ:
Y = ∇µϕ∇νϕ(gµν + AµAν) and the projected vector field
gradient Jµ = Aα (∇αA

µ) it reads

LAeST =R − KB

2
FµνFµν + 2(2 − KB)Jµ∇µϕ

− (2 − KB)Y − F(Y,Q) − λ(AµAµ + 1) (1)

where R is the Ricci scalar, KB is a coupling constant,
Fµν = ∇µAν −∇νAµ is the field strength, F is a free function
and λ is a Lagrange multipler that imposes the unit time-like
constraint: AµAµ = gµνA

µAν = −1.



Relativistic extensions of Modified Newtonian Dynamics
Enter Aether-Scalar-Tensor theory (AeST)
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Skordis and Z lośnik (2020) proposed such a theory (called
Aether-Scalar-Tensor theory) with a unit time-like vector field
Aµ, a scalar field ϕ, and a metric/tensor gµν .

Defining kinetic terms for the scalar field along the direction
of Aµ: Q = ∇µϕA

µ, perpendicular to Aµ:
Y = ∇µϕ∇νϕ(gµν + AµAν) and the projected vector field
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− (2 − KB)Y − F(Y,Q) − λ(AµAµ + 1) (1)
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and λ is a Lagrange multipler that imposes the unit time-like
constraint:

AµAµ = gµνA
µAν = −1.
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Turns out evolution of Q (∼ ϕ̇) towards Q0 mimicks a
homogeneous dust component.

The DM density ΩCDM is set by the amount of displacement
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Static weak-field solutions of AeST
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To get the (quasi-)static weak-field equations only quadratic
terms of the fields were kept in the action, scalar field
expanded about the minimum Q0, time derivatives neglected,
and the variational derivatives taken.
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Static weak-field solutions of AeST

The weak-field equations of the (scalar sector) are

∇ · (f (|∇χ|/a0)∇χ) = ∇2Φ (3)

∇2Φ −∇2χ + m2Φ = 4πGρb (4)

where χ is the scalar field (derived from ϕ) and Φ is the
potential.

This can be reduced to one equation in only the gravitational
potential

∇ · (µ (|∇Φ|/a0)∇Φ) + m2Φ︸︷︷︸
novel

= 4πGρ. (5)

Note that there is now explicit dependence of the potential:
the absolute value of the potential matters. Can distinguish
large from small potential. (Distinguish galaxy cluster from
galaxy?)
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AeST vacuum solutions
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Static spherically symmetric weak-field solutions of AeST:
isothermal case
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A challenge to AeST

The RAR extended by weak lensing is a potential challenge to
AeST.

As AeST introduces a new length scale 1/L = m the
MOND behaviour should stop around a scale depending on L
and rM.

The stacking used may however wash out the oscillations,
especially since the position of the nodes of the oscillations
are affected by the boundary conditions of the potential.

Shifts in the potential may also delay the onset of oscillatory
behaviour.
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Conclusions

There is observational support for MOND in galactic systems.

Galaxy clusters remain a challenge.

A recently proposed relativistic embedding of MOND,
Aether-Scalar-Tensor theory (AeST) has a ΛCDM limit and a
MOND regime.

MOND only appears in a limited regime.

The weak-field effects explicitly depend on the potential which
may potentially distinguish galaxies from galaxy clusters.

Though further quantitative investigation is needed there are
new weak-field effects in the theory that enhance the force
compared to MOND.

AeST has a rich phenomenology with other elements
(non-static effects and vector field) which may address other
issues, such as the apparent dark matter distribution around
colliding clusters.
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issues, such as the apparent dark matter distribution around
colliding clusters.





Role of vector fields

Away from spherical symmetry the vector field cannot a priori
be neglected. The weak field AeST system has been derived
and reads

∇2Φ̃ + K̃2Q2
0

(
Φ̃ + χ

)
= 4πGρb

∇2Φ̃ = ∇ ·
(
J ′ (∇χ + Q0β)

)
− KB

2 (2 − KB)
∇2β + Q2

0β + J ′ (∇χ + Q0β) + ∇Φ = 0

where β is a divergenceless vector.

Whether the new terms can be important for colliding galaxy
clusters is currently under investigation.

It appears that they have minor effect on the rotation curve of
a MW-like galaxy (Mistele).



Addressing the displaced halo in galaxy clusters

By construction the static equations have Φ̇, χ̇ = 0.

When expanding around Minkowski space it turns out that
scalar, vector and tensor perturbations travel at different
speeds.

Could the scalar field lag behind baryons set in motion, only
to join again when caught up? That would give a
displacement of the baryonic distribution from the scalar field
and potentially a displaced lensing signal.

Another possibility: Though the galaxy clusters themselves are
spherically symmetric the configuration that has both of them
in collision is not, so there may be effects from the vector field.


