Recent Developments in Relativistic Embeddings of Modified Newtonian Dynamics

Amel Durakovic

in collaboration with Constantinos Skordis and Benoît Famaey

Institute of Physics of the Czech Academy of Sciences & Observatoire astronomique de Strasbourg

■ Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter,

• Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.

- Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.
- After all, evidence for dark matter is inferred through gravity,

- Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.
- After all, evidence for dark matter is inferred through gravity, so second option is *still* a possibility.

- Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.
- After all, evidence for dark matter is inferred through gravity, so second option is still a possibility.
- Disregarding for now the intriguing, but controversial, inconclusive case

- Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.
- After all, evidence for dark matter is inferred through gravity, so second option is still a possibility.
- Disregarding for now the intriguing, but controversial, inconclusive case of discrepant velocities of widely separated (kAU) binary stars,

- Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.
- After all, evidence for dark matter is inferred through gravity, so second option is still a possibility.
- Disregarding for now the intriguing, but controversial, inconclusive case of discrepant velocities of widely separated (kAU) binary stars, higher than expected in Newtonian gravity,

- Independent lines of evidence, on a range of scales, suggest that there is more matter than expected, dark matter, or that gravity is different, modified gravity.
- After all, evidence for dark matter is inferred through gravity, so second option is still a possibility.
- Disregarding for now the intriguing, but controversial, inconclusive case of discrepant velocities of widely separated (kAU) binary stars, higher than expected in Newtonian gravity, the first evidence is galactic.

Old news Galactic evidence of an unknown

• Rather than a Keplerian decline in the outskirts,

Old news Galactic evidence of an unknown

 Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed,

Galactic evidence of an unknown

 Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed,

$$v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$$
,

Old news Galactic evidence of an unknown

■ Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed, $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.

Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed,

- $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.
- Unexpected

- Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed, $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.
- Unexpected unless there is more mass,

■ Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed, $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.

 Unexpected unless there is more mass, the dark matter halo extending well beyond the disk,

- Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed, $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.
- Unexpected unless there is more mass, the dark matter halo extending well beyond the disk, arranged such that $M(r) \rightarrow r$,

- Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed, $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.
- Unexpected unless there is more mass, the dark matter halo extending well beyond the disk, arranged such that $M(r) \rightarrow r$, cancelling the dependence of v^2 on r in the denominator,

Galactic evidence of an unknown

- Rather than a Keplerian decline in the outskirts, expected when all matter has been encompassed, $v^2/r = GM/r^2 \Rightarrow v^2 = GM/r$, velocities of stars and gas in spiral galaxies are found to asymptote to a constant $v \to v_{\infty}$.
- Unexpected unless there is more mass, the dark matter halo extending well beyond the disk, arranged such that $M(r) \to r$, cancelling the dependence of v^2 on r in the denominator, and hence $v^2 \to v_\infty^2$,

Galactic regularity: baryonic Tully-Fisher relation

• It turns out that v_{∞} can be inferred from just the baryonic mass of the galaxy M_b ,

Galactic regularity: baryonic Tully-Fisher relation

It turns out that v_{∞} can be inferred from just the baryonic mass of the galaxy M_b , implying a non-trivial relation between the baryonic and dark matter distribution.

Galactic regularity: baryonic Tully-Fisher relation

- It turns out that v_{∞} can be inferred from just the baryonic mass of the galaxy M_b , implying a non-trivial relation between the baryonic and dark matter distribution.
- There is evidence that $v_{\infty}^4 \propto M_b$.

Galactic regularity: baryonic Tully-Fisher relation

- It turns out that v_{∞} can be inferred from just the baryonic mass of the galaxy M_b , implying a non-trivial relation between the baryonic and dark matter distribution.
- There is evidence that $v_{\infty}^4 \propto M_b$.

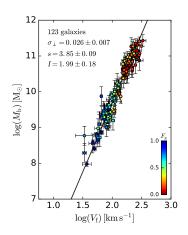


Figure: Power-law relation between v_{∞} and M_b . Slope consistent with 4. (Lelli et al., 2019)

■ This is natural in Modified Newtonian Dynamics (MOND).

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$.

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0 and have $a_{obs} = \sqrt{a_0 a_N}$.

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0 and have $a_{obs} = \sqrt{a_0 a_N}$.
- a_0 sets the scale of transition to MOND behaviour $(a_0 \approx 1.2 \cdot 10^{-10} \mathrm{m \cdot s^{-2}})$.

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0 and have $a_{obs} = \sqrt{a_0 a_N}$.
- a_0 sets the scale of transition to MOND behaviour $(a_0 \approx 1.2 \cdot 10^{-10} \mathrm{m \cdot s^{-2}})$.
- Then $a_{\rm obs} = \sqrt{a_0} \sqrt{GM_b/r^2} = \sqrt{a_0 GM_b}/r$

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0 and have $a_{obs} = \sqrt{a_0 a_N}$.
- a_0 sets the scale of transition to MOND behaviour $(a_0 \approx 1.2 \cdot 10^{-10} \mathrm{m \cdot s^{-2}})$.
- Then $a_{\rm obs} = \sqrt{a_0} \sqrt{GM_b/r^2} = \sqrt{a_0 GM_b}/r = v_\infty^2/r$

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0 and have $a_{obs} = \sqrt{a_0 a_N}$.
- a_0 sets the scale of transition to MOND behaviour $(a_0 \approx 1.2 \cdot 10^{-10} \mathrm{m \cdot s^{-2}})$.
- Then $a_{\rm obs} = \sqrt{a_0} \sqrt{GM_b/r^2} = \sqrt{a_0 GM_b}/r = v_{\infty}^2/r \Rightarrow v_{\infty}^2 = \sqrt{a_0 GM_b}$.

- This is natural in Modified Newtonian Dynamics (MOND).
- There is another way to cancel the r in the denominator of the gravitational acceleration $GM/r^2 = a_{\rm obs} = v^2/r$.
- To take a square root.
- So for very low accelerations $a_{obs} = \sqrt{a_N}$. For units to match, must introduce a new scale a_0 and have $a_{obs} = \sqrt{a_0 a_N}$.
- a_0 sets the scale of transition to MOND behaviour $(a_0 \approx 1.2 \cdot 10^{-10} \mathrm{m \cdot s^{-2}})$.
- Then $a_{\rm obs} = \sqrt{a_0} \sqrt{GM_b/r^2} = \sqrt{a_0 GM_b}/r = v_{\infty}^2/r \Rightarrow v_{\infty}^2 = \sqrt{a_0 GM_b}$.
- Squaring again find that $v_{\infty}^4 = (a_0 G) M_b$, the baryonic Tully-Fisher relation, with the constant now identified!



The non-relativistic field equation of MOND

■ What could the non-relativistic field equation look like?

The non-relativistic field equation of MOND

- What could the non-relativistic field equation look like?
- $\mathbf{\nabla}^2 \Phi_N$

- What could the non-relativistic field equation look like?

- What could the non-relativistic field equation look like?

- What could the non-relativistic field equation look like?

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}| = \sqrt{a_0} \sqrt{|a_N|}$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$,

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- $\nabla \cdot (|\nabla \Phi| \nabla \Phi) = a_0 \nabla \cdot a_N$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- $\nabla \cdot (|\nabla \Phi| \nabla \Phi) = a_0 \nabla \cdot a_N = a_0 4\pi G \rho_b$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- $\nabla \cdot (|\nabla \Phi| \nabla \Phi) = a_0 \nabla \cdot a_N = a_0 4\pi G \rho_b$, or
- $\nabla \cdot (|\nabla \Phi|/a_0 \nabla \Phi) = 4\pi G \rho_b,$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- lacksquare $\nabla \cdot (|
 abla \Phi|
 abla \Phi) = a_0
 abla \cdot a_N = a_0 4\pi G
 ho_b$, or
- $\nabla \cdot (|\nabla \Phi|/a_0 \nabla \Phi) = 4\pi G \rho_b$, a modified Poisson equation.

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- $\nabla \cdot (|\nabla \Phi| \nabla \Phi) = a_0 \nabla \cdot a_N = a_0 4\pi G \rho_b$, or
- $\nabla \cdot (|\nabla \Phi|/a_0 \nabla \Phi) = 4\pi G \rho_b$, a modified Poisson equation.
- \blacksquare To interpolate between MOND behaviour we introduce an interpolating function μ

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- $\nabla \cdot (|\nabla \Phi| \nabla \Phi) = a_0 \nabla \cdot a_N = a_0 4\pi G \rho_b$, or
- $\nabla \cdot (|\nabla \Phi|/a_0 \nabla \Phi) = 4\pi G \rho_b$, a modified Poisson equation.
- \blacksquare To interpolate between MOND behaviour we introduce an interpolating function μ so that generally
- $\nabla \cdot \left(\mu \left(|\nabla \Phi|/a_0 \right) \nabla \Phi \right) = 4\pi G \rho_b$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}|=\sqrt{a_0}\sqrt{|a_N|}$ or squaring, $|a_{\rm obs}|a_{\rm obs}=a_0a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- lacksquare $\nabla \cdot (|
 abla \Phi|
 abla \Phi) = a_0
 abla \cdot a_N = a_0 4\pi G
 ho_b$, or
- $\nabla \cdot (|\nabla \Phi|/a_0 \nabla \Phi) = 4\pi G \rho_b$, a modified Poisson equation.
- \blacksquare To interpolate between MOND behaviour we introduce an interpolating function μ so that generally
- $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$
- where $\mu(x) \to x$ for low accelerations $x \ll 1$

- What could the non-relativistic field equation look like?
- In MOND, we must have that $|a_{\rm obs}| = \sqrt{a_0} \sqrt{|a_N|}$ or squaring, $|a_{\rm obs}| a_{\rm obs} = a_0 a_{\rm N}$
- But $a_{\rm obs} = \nabla \Phi$, so substituting
- $|\nabla \Phi| \nabla \Phi = a_0 a_N$
- and taking the divergence, gives
- $\nabla \cdot (|\nabla \Phi| \nabla \Phi) = a_0 \nabla \cdot a_N = a_0 4\pi G \rho_b$, or
- $\nabla \cdot (|\nabla \Phi|/a_0 \nabla \Phi) = 4\pi G \rho_b$, a modified Poisson equation.
- $lue{}$ To interpolate between MOND behaviour we introduce an interpolating function μ so that generally
- $\nabla \cdot \left(\mu \left(|\nabla \Phi|/a_0 \right) \nabla \Phi \right) = 4\pi G \rho_b$
- where $\mu(x) \to x$ for low accelerations $x \ll 1$ and $\mu(x) \to 1$ for $x \gg 1$.

■ Is there a Lagrangian for

$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

Is there a Lagrangian for

$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

■ Yes! The a-quadratic Lagrangian (AQUAL)

Is there a Lagrangian for

$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

■ Yes! The a-quadratic Lagrangian (AQUAL)

$$\mathcal{L} = \mathcal{J}\left(\left(\nabla\Phi\cdot\nabla\Phi\right)/a_0^2\right) + 4\pi G \rho_b \Phi$$

Is there a Lagrangian for

$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

■ Yes! The a-quadratic Lagrangian (AQUAL)

$$\mathcal{L} = \mathcal{J}\left(\left(\nabla\Phi\cdot\nabla\Phi\right)/a_0^2\right) + 4\pi G \rho_b \Phi$$

leads to the field equation when $\mathcal{J}'(x) = \mu(x)$ (\mathcal{J} is the integral of μ).

Is there a Lagrangian for

$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

Yes! The a-quadratic Lagrangian (AQUAL)

$$\mathcal{L} = \mathcal{J}\left(\left(\nabla\Phi\cdot\nabla\Phi\right)/a_0^2\right) + 4\pi G \rho_b \Phi$$

leads to the field equation when $\mathcal{J}'(x) = \mu(x)$ (\mathcal{J} is the integral of μ).

Then one can rest assured that momentum and energy conservation is satisfied.

Is there a Lagrangian for

$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

Yes! The a-quadratic Lagrangian (AQUAL)

$$\mathcal{L} = \mathcal{J}\left(\left(\nabla\Phi\cdot\nabla\Phi\right)/a_0^2\right) + 4\pi G\rho_b\Phi$$

leads to the field equation when $\mathcal{J}'(x) = \mu(x)$ (\mathcal{J} is the integral of μ).

- Then one can rest assured that momentum and energy conservation is satisfied.
- lacktriangle Another approach to getting the equations is to have a hierarchy such that Φ_N satisfies the Poisson equation

Is there a Lagrangian for

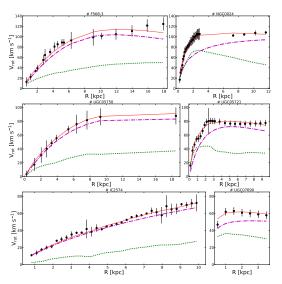
$$\nabla \cdot \left(\mu \left(\frac{|\nabla \Phi|}{a_0} \right) \nabla \Phi \right) = 4\pi G \rho_b?$$

Yes! The a-quadratic Lagrangian (AQUAL)

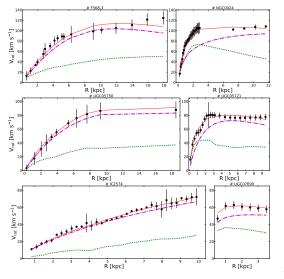
$$\mathcal{L} = \mathcal{J}\left(\left(\nabla\Phi\cdot\nabla\Phi\right)/a_0^2\right) + 4\pi G\rho_b\Phi$$

leads to the field equation when $\mathcal{J}'(x) = \mu(x)$ (\mathcal{J} is the integral of μ).

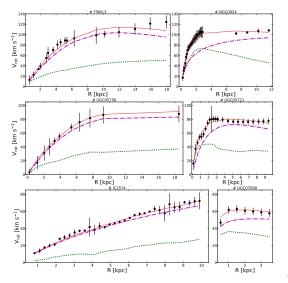
- Then one can rest assured that momentum and energy conservation is satisfied.
- Another approach to getting the equations is to have a hierarchy such that Φ_N satisfies the Poisson equation and enforce an algebraic relation between $\nabla\Phi$ and $\nabla\Phi_N$ (QUMOND).



■ Three v_{∞} twins (Ghari, Famaey et al., 2019).



- Three v_{∞} twins (Ghari, Famaey et al., 2019).
- Same v_{∞} , slow/fast approach to v_{∞} .



- Three v_{∞} twins (Ghari, Famaey et al., 2019).
- Same v_{∞} , slow/fast approach to v_{∞} .
- Rotation curve tracks trend of baryonic contribution.

Additional galactic regularity: the Radial Acceleration Relation (RAR)

 Observational support for MOND most clearly illustrated by the Radial Acceleration Relation.

- Observational support for MOND most clearly illustrated by the Radial Acceleration Relation.
- Accelerations in diverse galaxies land, with small scatter, on the same 1-1 relation with the acceleration expected from the baryons alone,

- Observational support for MOND most clearly illustrated by the Radial Acceleration Relation.
- Accelerations in diverse galaxies land, with small scatter, on the same 1-1 relation with the acceleration expected from the baryons alone, i.e.,

- Observational support for MOND most clearly illustrated by the Radial Acceleration Relation.
- Accelerations in diverse galaxies land, with small scatter, on the same 1-1 relation with the acceleration expected from the baryons alone, i.e., there is an algebraic relation.

- Observational support for MOND most clearly illustrated by the Radial Acceleration Relation.
- Accelerations in diverse galaxies land, with small scatter, on the same 1-1 relation with the acceleration expected from the baryons alone, i.e., there is an algebraic relation.

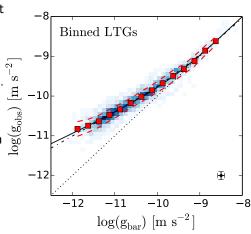


Figure: The baryons alone predict the dynamics (153 LTG) (Lelli et al., 2019).

Recent news.

Additional regularity: the radial acceleration relation (RAR) extended

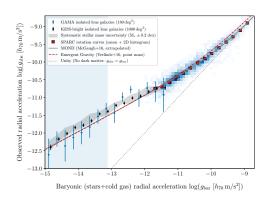


Figure: RAR extended by weak lensing agrees with deep MOND behaviour (slope 1/2) (Brouwer et al., 2019).

 Recently, the Radial Acceleration Relation has been extended by orders of magnitude using weak lensing.

Recent news.

Additional regularity: the radial acceleration relation (RAR) extended

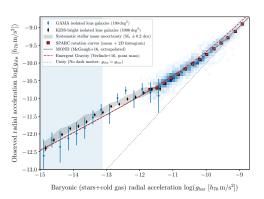


Figure: RAR extended by weak lensing agrees with deep MOND behaviour (slope 1/2) (Brouwer et al., 2019).

- Recently, the Radial Acceleration Relation has been extended by orders of magnitude using weak lensing.
- Signal of $\sim 10^5$ lenses (KiDS and GAMA) of isolated late-type and early-type galaxies, stacked.

Recent news.

Additional regularity: the radial acceleration relation (RAR) extended

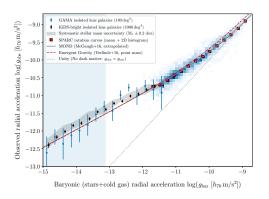


Figure: RAR extended by weak lensing agrees with deep MOND behaviour (slope 1/2) (Brouwer et al., 2019).

- Recently, the Radial Acceleration Relation has been extended by orders of magnitude using weak lensing.
- Signal of $\sim 10^5$ lenses (KiDS and GAMA) of isolated late-type and early-type galaxies, stacked.
- Consistent with MOND behaviour persisting!

Not-so-old news. To larger scales: galaxy clusters

■ Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.

Not-so-old news. To larger scales: galaxy clusters

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure,

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure, pressure related to potential by hydrostatic eq.),

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure, pressure related to potential by hydrostatic eq.),
 - X-ray bremsstrahlung luminosity and temperature

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure, pressure related to potential by hydrostatic eq.),
 - X-ray bremsstrahlung luminosity and temperature (giving combination of density and temperature

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure, pressure related to potential by hydrostatic eq.),
 - X-ray bremsstrahlung luminosity and temperature (giving combination of density and temperature hence pressure,

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure, pressure related to potential by hydrostatic eq.),
 - X-ray bremsstrahlung luminosity and temperature (giving combination of density and temperature hence pressure, hence potential).

- Relaxed galaxy clusters are modelled as gaseous spherically symmetric configurations in hydrostatic equilibrium $\nabla p = \nabla \Phi$.
- Most of the baryonic mass is in X-ray emitting gas.
- Potential can be derived using
 - velocity dispersion of galactic population (via virial theorem),
 - weak and strong lensing,
 - thermal Sunyaev-Zeldovich effect (distortion of CMB proportional to line-of-sight integral of electron pressure, pressure related to potential by hydrostatic eq.),
 - X-ray bremsstrahlung luminosity and temperature (giving combination of density and temperature hence pressure, hence potential).

A Radial Acceleration Relation for galaxy clusters? Conflicts.

 Combining tSZ observations and X-ray observations for five nearby galaxy clusters,

Not-so-old news. To larger scales: galaxy clusters A Radial Acceleration Relation for galaxy clusters? Conflicts.

Combining tSZ observations and X-ray observations for five nearby galaxy clusters, Eckert et al. have found a RAR for galaxy clusters in conflict with the galactic RAR.

A Radial Acceleration Relation for galaxy clusters? Conflicts.

- Combining tSZ observations and X-ray observations for five nearby galaxy clusters, Eckert et al. have found a RAR for galaxy clusters in conflict with the galactic RAR.
- Accelerations mostly larger than the galactic RAR, hence stronger gravity or missing matter.

A Radial Acceleration Relation for galaxy clusters? Conflicts.

- Combining tSZ observations and X-ray observations for five nearby galaxy clusters, Eckert et al. have found a RAR for galaxy clusters in conflict with the galactic RAR.
- Accelerations mostly larger than the galactic RAR, hence stronger gravity or missing matter.

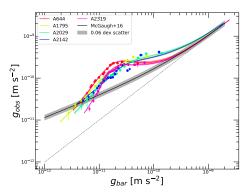


Figure: The RAR of galaxy clusters (tSZ and X-ray obs.) departs from the galactic RAR (Eckert et al., 2022).

Not-so-old news. To larger scales: galaxy clusters A Radial Acceleration Relation for galaxy clusters? Conflicts.

 Using weak and strong lensing data Tian et al. have found that MOND could work,

Not-so-old news. To larger scales: galaxy clusters A Radial Acceleration Relation for galaxy clusters? Conflicts.

Using weak and strong lensing data Tian et al. have found that MOND could work, but with $a_0 \rightarrow 17a_0$ for galaxy clusters alone.

A Radial Acceleration Relation for galaxy clusters? Conflicts.

Using weak and strong lensing data Tian et al. have found that MOND could work, but with $a_0 \rightarrow 17a_0$ for galaxy clusters alone.

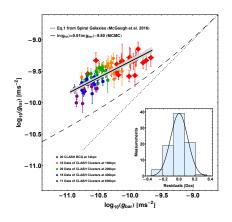


Figure: RAR of galaxy clusters inferred from lensing also departs from galactic RAR. (Tian et al., 2020)

Largest scales, cosmology, CMB and LSS

■ Best fit model from CMB and LSS is flat Λ CDM model with $\Omega_{\rm CDM} \approx 5\Omega_b$.

Largest scales, cosmology, CMB and LSS

- Best fit model from CMB and LSS is flat Λ CDM model with $\Omega_{\rm CDM} \approx 5\Omega_b$.
- Tightly constrained dust-like (pressureless) behaviour: energy density decays as a^{-3} , negligible speed of sound c_s .

Largest scales, cosmology, CMB and LSS

- Best fit model from CMB and LSS is flat Λ CDM model with $\Omega_{\rm CDM} \approx 5\Omega_b$.
- Tightly constrained dust-like (pressureless) behaviour: energy density decays as a^{-3} , negligible speed of sound c_s .
- Need relativistic theory to address.

Largest scales, cosmology, CMB and LSS

- Best fit model from CMB and LSS is flat Λ CDM model with $\Omega_{\rm CDM} \approx 5\Omega_b$.
- Tightly constrained dust-like (pressureless) behaviour: energy density decays as a^{-3} , negligible speed of sound c_s .
- Need relativistic theory to address.

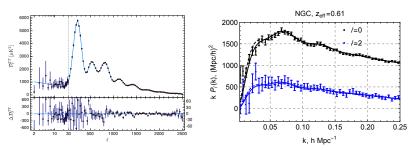


Figure: Left: Planck angular power spectrum. (Aghanim et al., 2018). Right: Matter power spectrum from BOSS (SDSS), monopole and quadrupole. (Ivanov et al., 2021)

■ Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward:

■ Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.

- Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.
- This theory is clearly non-relativistic:

- Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.
- This theory is clearly non-relativistic: It has only spatial derivatives ∇Φ.

- Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.
- This theory is clearly non-relativistic: It has only spatial derivatives $\nabla \Phi$. A relativistic theory would necessarily involve time derivatives $\partial \Phi/\partial t$ (symmetrically).

- Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.
- This theory is clearly non-relativistic: It has only spatial derivatives $\nabla \Phi$. A relativistic theory would necessarily involve time derivatives $\partial \Phi / \partial t$ (symmetrically).
- A natural starting point, to not spoil all the successes of general relativity, is to have a metric theory, involving $g_{\mu\nu}$.

- Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.
- This theory is clearly non-relativistic: It has only spatial derivatives $\nabla \Phi$. A relativistic theory would necessarily involve time derivatives $\partial \Phi / \partial t$ (symmetrically).
- A natural starting point, to not spoil all the successes of general relativity, is to have a metric theory, involving $g_{\mu\nu}$.
- Just as general relativity reduces to Newtonian gravity in the weak-field, slow-motion $(v \ll c)$ regime,

- Modifying the Poisson equation $\nabla^2 \Phi = 4\pi G \rho_b$ to have a MOND limit was in retrospect straightforward: $\nabla \cdot (\mu(|\nabla \Phi|/a_0) \nabla \Phi) = 4\pi G \rho_b$.
- This theory is clearly non-relativistic: It has only spatial derivatives $\nabla \Phi$. A relativistic theory would necessarily involve time derivatives $\partial \Phi / \partial t$ (symmetrically).
- A natural starting point, to not spoil all the successes of general relativity, is to have a metric theory, involving $g_{\mu\nu}$.
- Just as general relativity reduces to Newtonian gravity in the weak-field, slow-motion $(v \ll c)$ regime, so we need to find a theory whose weak-field, slow motion and low acceleration regime $a \ll a_0$ is governed by MOND.

 \blacksquare The road to general relativity was not a simple promotion of gradients ∇

■ The road to general relativity was not a simple promotion of gradients ∇ to four-derivatives ∂_i

■ The road to general relativity was not a simple promotion of gradients ∇ to four-derivatives ∂_i and Laplacians ∇^2

■ The road to general relativity was not a simple promotion of gradients ∇ to four-derivatives ∂_i and Laplacians ∇^2 to d'Alembertians $\Box = \eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$

■ The road to general relativity was not a simple promotion of gradients ∇ to four-derivatives ∂_i and Laplacians ∇^2 to d'Alembertians $\Box = \eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$ involving only the potential Φ .

- The road to general relativity was not a simple promotion of gradients ∇ to four-derivatives ∂_i and Laplacians ∇^2 to d'Alembertians $\square = \eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$ involving only the potential Φ .
- In general relativity, the potential Φ is only the diagonal part of the larger metric tensor $g_{\mu\nu}$: $g_{00} = -1 + 2\Phi$, $g_{ii} = 1 + 2\Phi$.

Motivated by the need to have a theory that

- Motivated by the need to have a theory that
 - has a MOND limit for $|\nabla \Phi| < a_0$,

- Motivated by the need to have a theory that
 - has a MOND limit for $|\nabla \Phi| < a_0$,
 - is GR-like for large accelerations $|\nabla \Phi| \gg a_0$, strong field-regime,

- Motivated by the need to have a theory that
 - has a MOND limit for $|\nabla \Phi| < a_0$,
 - is GR-like for large accelerations $|\nabla \Phi| \gg a_0$, strong field-regime,
 - is consistent with observations of CMB anisotropies and of large scale structure,

- Motivated by the need to have a theory that
 - has a MOND limit for $|\nabla \Phi| < a_0$,
 - is GR-like for large accelerations $|\nabla \Phi| \gg a_0$, strong field-regime,
 - is consistent with observations of CMB anisotropies and of large scale structure,
 - has gravitational waves that travel at light speed,

■ Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory)

Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} ,

Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ ,

Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} :

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu} \phi A^{\mu}$,

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi\left(\mathbf{g}^{\mu\nu} + A^{\mu}A^{\nu}\right)$ and the projected vector field gradient $J^{\mu} = A^{\alpha}\left(\nabla_{\alpha}A^{\mu}\right)$ it reads

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}(\nabla_{\alpha}A^{\mu})$ it reads

$$\mathcal{L}_{\text{AeST}} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \qquad (1)$$

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}\left(\nabla_{\alpha}A^{\mu}\right)$ it reads

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{1}$$

where R is the Ricci scalar,

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}(\nabla_{\alpha}A^{\mu})$ it reads

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \qquad (1)$$

where R is the Ricci scalar, K_B is a coupling constant,

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}\left(\nabla_{\alpha}A^{\mu}\right)$ it reads

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{1}$$

where R is the Ricci scalar, K_B is a coupling constant, $F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$ is the field strength,

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}\left(\nabla_{\alpha}A^{\mu}\right)$ it reads

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{1}$$

where R is the Ricci scalar, K_B is a coupling constant, $F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$ is the field strength, $\mathcal F$ is a free function

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}\left(\nabla_{\alpha}A^{\mu}\right)$ it reads

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{1}$$

where R is the Ricci scalar, K_B is a coupling constant, $F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$ is the field strength, $\mathcal F$ is a free function and λ is a Lagrange multipler that imposes the unit time-like constraint:

- Skordis and Złośnik (2020) proposed such a theory (called Aether-Scalar-Tensor theory) with a unit time-like vector field A_{μ} , a scalar field ϕ , and a metric/tensor $g_{\mu\nu}$.
- Defining kinetic terms for the scalar field along the direction of A^{μ} : $Q = \nabla_{\mu}\phi A^{\mu}$, perpendicular to A^{μ} : $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(\mathbf{g}^{\mu\nu} + A^{\mu}A^{\nu})$ and the projected vector field gradient $J^{\mu} = A^{\alpha}\left(\nabla_{\alpha}A^{\mu}\right)$ it reads

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1)$$
(1)

where R is the Ricci scalar, K_B is a coupling constant, $F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$ is the field strength, \mathcal{F} is a free function and λ is a Lagrange multipler that imposes the unit time-like constraint: $A^{\mu}A_{\mu} = g_{\mu\nu}A^{\mu}A^{\nu} = -1$.

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

Function \mathcal{F}

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

■ Function \mathcal{F} of $\mathcal{Q} = A^{\mu} \nabla_{\mu} \phi$ (time, cosmology)

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

■ Function \mathcal{F} of $\mathcal{Q} = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(\mathbf{g}^{\mu\nu} + A^{\mu}A^{\nu})$ (space)

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

■ Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .
- CDM-like behaviour: $(Q Q_0)^2$ in \mathcal{F} ,

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu} \nabla_{\mu} \phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu} \phi \nabla_{\nu} \phi (g^{\mu\nu} + A^{\mu} A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .
- CDM-like behaviour: $(Q Q_0)^2$ in \mathcal{F} , minimum at a non-zero value Q_0 .

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .
- CDM-like behaviour: $(Q Q_0)^2$ in \mathcal{F} , minimum at a non-zero value Q_0 .
- lacksquare Turns out evolution of $\mathcal Q$

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu} \nabla_{\mu} \phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu} \phi \nabla_{\nu} \phi (g^{\mu\nu} + A^{\mu} A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .
- CDM-like behaviour: $(Q Q_0)^2$ in \mathcal{F} , minimum at a non-zero value Q_0 .
- lacksquare Turns out evolution of $\mathcal{Q}~(\sim\dot{\phi})$

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .
- CDM-like behaviour: $(Q Q_0)^2$ in \mathcal{F} , minimum at a non-zero value Q_0 .
- Turns out evolution of \mathcal{Q} ($\sim \dot{\phi}$) towards \mathcal{Q}_0 mimicks a homogeneous dust component.

$$\mathcal{L}_{AeST} = R - \frac{K_B}{2} F^{\mu\nu} F_{\mu\nu} + 2(2 - K_B) J^{\mu} \nabla_{\mu} \phi$$
$$- (2 - K_B) \mathcal{Y} - \mathcal{F}(\mathcal{Y}, \mathcal{Q}) - \lambda (A^{\mu} A_{\mu} + 1) \tag{2}$$

- Function \mathcal{F} of $Q = A^{\mu}\nabla_{\mu}\phi$ (time, cosmology) and $\mathcal{Y} = \nabla_{\mu}\phi\nabla_{\nu}\phi(g^{\mu\nu} + A^{\mu}A^{\nu})$ (space) is undetermined.
- Different choices lead to different behaviour.
- MOND behaviour: $\frac{1}{a_0}\mathcal{Y}^{3/2}$ in \mathcal{F} .
- CDM-like behaviour: $(Q Q_0)^2$ in \mathcal{F} , minimum at a non-zero value Q_0 .
- Turns out evolution of \mathcal{Q} ($\sim \dot{\phi}$) towards \mathcal{Q}_0 mimicks a homogeneous dust component.
- The DM density $\Omega_{\rm CDM}$ is set by the amount of displacement of ${\mathcal Q}$ from ${\mathcal Q}_0$.

Static weak-field solutions of AeST

■ That was the full relativistic action.

Static weak-field solutions of AeST

- That was the full relativistic action.
- To get the (quasi-)static weak-field equations

Static weak-field solutions of AeST

- That was the full relativistic action.
- To get the (quasi-)static weak-field equations only quadratic terms of the fields were kept in the action,

- That was the full relativistic action.
- To get the (quasi-)static weak-field equations only quadratic terms of the fields were kept in the action, scalar field expanded about the minimum Q_0 ,

- That was the full relativistic action.
- lacktriangleright To get the (quasi-)static weak-field equations only quadratic terms of the fields were kept in the action, scalar field expanded about the minimum \mathcal{Q}_0 , time derivatives neglected,

- That was the full relativistic action.
- To get the (quasi-)static weak-field equations only quadratic terms of the fields were kept in the action, scalar field expanded about the minimum Q_0 , time derivatives neglected, and the variational derivatives taken.

■ The weak-field equations of the (scalar sector) are

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

where χ is the scalar field (derived from ϕ) and Φ is the potential.

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

where χ is the scalar field (derived from ϕ) and Φ is the potential.

This can be reduced to one equation in only the gravitational potential

$$\nabla \cdot \left(\mu \left(|\nabla \Phi| / a_0 \right) \nabla \Phi \right) + \underbrace{m^2 \Phi}_{\text{novel}} = 4\pi G \rho. \tag{5}$$

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

where χ is the scalar field (derived from ϕ) and Φ is the potential.

This can be reduced to one equation in only the gravitational potential

$$\nabla \cdot \left(\mu \left(|\nabla \Phi| / a_0 \right) \nabla \Phi \right) + \underbrace{m^2 \Phi}_{\text{novel}} = 4\pi G \rho. \tag{5}$$

■ Note that there is now explicit dependence of the potential:

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

where χ is the scalar field (derived from ϕ) and Φ is the potential.

This can be reduced to one equation in only the gravitational potential

$$\nabla \cdot \left(\mu \left(|\nabla \Phi| / a_0 \right) \nabla \Phi \right) + \underbrace{m^2 \Phi}_{\text{novel}} = 4\pi G \rho. \tag{5}$$

■ Note that there is now explicit dependence of the potential: the absolute value of the potential matters.

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

where χ is the scalar field (derived from ϕ) and Φ is the potential.

This can be reduced to one equation in only the gravitational potential

$$\nabla \cdot \left(\mu \left(|\nabla \Phi| / a_0 \right) \nabla \Phi \right) + \underbrace{m^2 \Phi}_{\text{novel}} = 4\pi G \rho. \tag{5}$$

Note that there is now explicit dependence of the potential: the absolute value of the potential matters. Can distinguish large from small potential.

■ The weak-field equations of the (scalar sector) are

$$\nabla \cdot (f(|\nabla \chi|/a_0) \nabla \chi) = \nabla^2 \Phi \tag{3}$$

$$\nabla^2 \Phi - \nabla^2 \chi + m^2 \Phi = 4\pi G \rho_b \tag{4}$$

where χ is the scalar field (derived from ϕ) and Φ is the potential.

This can be reduced to one equation in only the gravitational potential

$$\nabla \cdot \left(\mu \left(|\nabla \Phi| / a_0 \right) \nabla \Phi \right) + \underbrace{m^2 \Phi}_{\text{novel}} = 4\pi G \rho. \tag{5}$$

Note that there is now explicit dependence of the potential: the absolute value of the potential matters. Can distinguish large from small potential. (Distinguish galaxy cluster from galaxy?)

AeST vacuum solutions

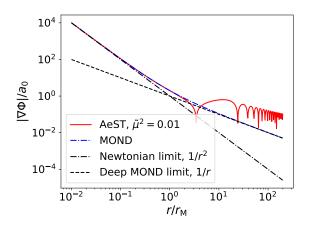


Figure: The magnitude of the force away from a point source in AeST (red). Newtonian regime $1/r^2$, MOND regime 1/r and oscillatory regime (with power-law enveloped). Distance in units of $r_{\rm M} = \sqrt{GM/a_0}$.

AeST vacuum solutions

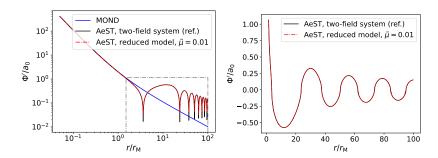


Figure: Oscillations in force. Left: Log-log plot of abs. value of force (AeST red, MOND blue). Right: Linear plot of force.

AeST vacuum solutions

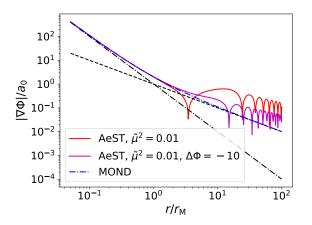


Figure: Onset of oscillatory regime depends on the boundary value of potential. Can be delayed by a lowered potential (magenta line).

Static spherically symmetric weak-field solutions of AeST: isothermal case

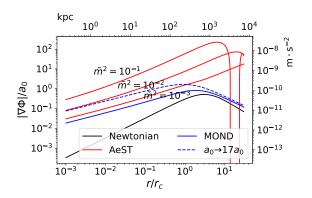


Figure: PRELIMINARY RESULT. Isothermal gas in hydrostatic equilibrium: $\rho = \exp(-\Phi)$. The force in AeST (red line) appears to be stronger than MOND (blue line) and also MOND with $a_0 \rightarrow 17a_0$ (dashed blue line).

The RAR extended by weak lensing is a potential challenge to AeST.

The RAR extended by weak lensing is a potential challenge to AeST. As AeST introduces a new length scale 1/L=m the MOND behaviour should stop around a scale depending on L and $r_{\rm M}$.

- The RAR extended by weak lensing is a potential challenge to AeST. As AeST introduces a new length scale 1/L = m the MOND behaviour should stop around a scale depending on L and $r_{\rm M}$.
- The stacking used may however wash out the oscillations, especially since the position of the nodes of the oscillations are affected by the boundary conditions of the potential.

- The RAR extended by weak lensing is a potential challenge to AeST. As AeST introduces a new length scale 1/L = m the MOND behaviour should stop around a scale depending on L and $r_{\rm M}$.
- The stacking used may however wash out the oscillations, especially since the position of the nodes of the oscillations are affected by the boundary conditions of the potential.
- Shifts in the potential may also delay the onset of oscillatory behaviour.

- The RAR extended by weak lensing is a potential challenge to AeST. As AeST introduces a new length scale 1/L = m the MOND behaviour should stop around a scale depending on L and $r_{\rm M}$.
- The stacking used may however wash out the oscillations, especially since the position of the nodes of the oscillations are affected by the boundary conditions of the potential.
- Shifts in the potential may also delay the onset of oscillatory behaviour.

■ There is observational support for MOND in galactic systems.

- There is observational support for MOND in galactic systems.
- Galaxy clusters remain a challenge.

- There is observational support for MOND in galactic systems.
- Galaxy clusters remain a challenge.
- A recently proposed relativistic embedding of MOND, Aether-Scalar-Tensor theory (AeST) has a ACDM limit and a MOND regime.

- There is observational support for MOND in galactic systems.
- Galaxy clusters remain a challenge.
- A recently proposed relativistic embedding of MOND, Aether-Scalar-Tensor theory (AeST) has a ACDM limit and a MOND regime.
- MOND only appears in a limited regime.

- There is observational support for MOND in galactic systems.
- Galaxy clusters remain a challenge.
- A recently proposed relativistic embedding of MOND, Aether-Scalar-Tensor theory (AeST) has a ACDM limit and a MOND regime.
- MOND only appears in a limited regime.
- The weak-field effects explicitly depend on the potential which may potentially distinguish galaxies from galaxy clusters.

- There is observational support for MOND in galactic systems.
- Galaxy clusters remain a challenge.
- A recently proposed relativistic embedding of MOND, Aether-Scalar-Tensor theory (AeST) has a ACDM limit and a MOND regime.
- MOND only appears in a limited regime.
- The weak-field effects explicitly depend on the potential which may potentially distinguish galaxies from galaxy clusters.
- Though further quantitative investigation is needed there are new weak-field effects in the theory that enhance the force compared to MOND.

- There is observational support for MOND in galactic systems.
- Galaxy clusters remain a challenge.
- A recently proposed relativistic embedding of MOND, Aether-Scalar-Tensor theory (AeST) has a ACDM limit and a MOND regime.
- MOND only appears in a limited regime.
- The weak-field effects explicitly depend on the potential which may potentially distinguish galaxies from galaxy clusters.
- Though further quantitative investigation is needed there are new weak-field effects in the theory that enhance the force compared to MOND.
- AeST has a rich phenomenology with other elements (non-static effects and vector field) which may address other issues, such as the apparent dark matter distribution around colliding clusters.

Role of vector fields

 Away from spherical symmetry the vector field cannot a priori be neglected. The weak field AeST system has been derived and reads

$$\begin{split} \nabla^{2}\tilde{\Phi} + \tilde{\mathcal{K}}_{2}\mathcal{Q}_{0}^{2}\left(\tilde{\Phi} + \chi\right) &= 4\pi G \rho_{b} \\ \nabla^{2}\tilde{\Phi} &= \nabla \cdot \left(\mathcal{J}'\left(\nabla \chi + \mathcal{Q}_{0}\beta\right)\right) \\ - \frac{\mathcal{K}_{B}}{2\left(2 - \mathcal{K}_{B}\right)}\nabla^{2}\beta + \mathcal{Q}_{0}^{2}\beta + \mathcal{J}'\left(\nabla \chi + \mathcal{Q}_{0}\beta\right) + \nabla \Phi &= 0 \end{split}$$

where β is a divergenceless vector.

- Whether the new terms can be important for colliding galaxy clusters is currently under investigation.
- It appears that they have minor effect on the rotation curve of a MW-like galaxy (Mistele).

Addressing the displaced halo in galaxy clusters

- By construction the static equations have $\dot{\Phi}, \dot{\chi} = 0$.
- When expanding around Minkowski space it turns out that scalar, vector and tensor perturbations travel at different speeds.
- Could the scalar field lag behind baryons set in motion, only to join again when caught up? That would give a displacement of the baryonic distribution from the scalar field and potentially a displaced lensing signal.
- Another possibility: Though the galaxy clusters themselves are spherically symmetric the configuration that has both of them in collision is not, so there may be effects from the vector field.