

Study on nuclear structure of important neutron-rich nuclei related to the *r-***process**

Yanxin Liu(刘艳鑫) Huzhou University July 14, 2023

Chirality and Wobbling in Atomic Nuclei, July 10-14,2023, Huizhou, China

01 **Motivation & background**

02 **Results & Discussion**

03 **Summary & Outlook**

Exploration of the New Frontier in Nuclear Physics

Motivation & background

s-process — neutron capture timescale > β-decay timescale

r-process — neutron capture timescale < β-decay timescale

Motivation & background

ordering of single-particle levels • **size of deformation**

- $\sqrt{}$ how it evolves with N & Z; are there shape changes?
- **pairing and residual nucleonnucleon interactions**
- role of the **K-quantum number**
- \checkmark both in γ-decay (K-isomers) and β-decay (spin-trap isomers)

 $I(I+1)$

Intrinsic coordinate

K. Hara and Y. Sun, Int. J. Mod. Phys. E 4,*637 (1995).*

K. Hara and Y. Sun, Int. J. Mod. Phys. E 4,*637 (1995).*

K. Hara and Y. Sun, Int. J. Mod. Phys. E 4,*637 (1995).*

How to select two-body interaction, single particle basis and model space?

K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).

Usually, quite satisfactory results can be obtained since the deformed quasiparticle basis already contains important correlations.

Results & Discussion-PSM

Nilsson potential

K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).

Results & Discussion-PSM

J. A. Sheikh and K. Hara, Phys. Rev. Lett. 82, 3968 (1999). *Y. Sun et al., Phys. Rev. C 61, 064323 (2000).*

Results & Discussion-PSM

J. A. Sheikh and K. Hara, Phys. Rev. Lett. 82, 3968 (1999). *Y. Sun et al., Phys. Rev. C 61, 064323 (2000).* $|0\rangle, a_{\nu}^+ a_{\nu}^+ |0\rangle, a_{\pi}^+ a_{\pi}^+ |0\rangle, a_{\nu}^+ a_{\nu}^+ a_{\pi}^+ a_{\pi}^+ |0\rangle$ **Double even nucleus: Double odd nucleus:** $a_{\nu}^{\dagger}a_{\pi}^{\dagger}|0\rangle$ $a_{v}^{+}|0\rangle, a_{v}^{+}a_{\pi1}^{+}a_{\pi2}^{+}|0\rangle$ **Odd neutron nucleus:** angular $a^+_{\pi}|0\rangle, a^+_{\pi}a^+_{\nu 1}a^+_{\nu 2}|0\rangle$ **Odd proton nucleus:** momentum **Nilsson+BCS deformed basis**

 $\left|\hat{P}^I_{\rm MK}\right| \Phi(\kappa)\right\rangle$

projection

Model space

Perform configuration mixing

PSM wave function

\n
$$
|\Psi_{IM}\rangle = \sum_{\kappa K} F_{\kappa K}^{I} \hat{P}_{MK}^{I} |\Phi_{\kappa}\rangle
$$
\n
$$
\sum_{\kappa' K'} \{H_{\kappa K \kappa' K'}^{I} - E N_{\kappa K \kappa' K'}^{I}\} F_{\kappa' K}^{I} = 0
$$
\n**Band energy**

\n
$$
E_{\kappa}(I) = \frac{\langle \Phi_{\kappa} | \hat{H} \hat{P}_{K K'}^{I} | \Phi_{\kappa} \rangle}{\langle \Phi_{\kappa} | \hat{P}_{K K'}^{I} | \Phi_{\kappa} \rangle} = \frac{H_{\kappa K}}{N_{\kappa K}}
$$

Moment of Inertia (J)

$$
J^{(1)} = \frac{2I - 1}{E(I) - E(I - 2)}
$$

B(E2, 1~~3~~1-2)

$$
B(E2, I \rightarrow I-2) = \frac{1}{2I+1} \left| \left\langle \Psi^{I-2} \middle| \hat{Q}_2 \middle| \Psi^I \right\rangle \right|^2
$$

g factor

$$
g(I) = \frac{\mu(I)}{\mu_N I} = \frac{1}{\mu_N I} \left[\mu_\pi(I) + \mu_\nu(I) \right]
$$

E **Experiment**

Known (new) levels and transitions are drawn with black (red) colors, respectively.

Energy

Comparison of the calculated PSM energies with available data for 130Ba. For the *t***-band,** *D***1and** *K***π=8− bands, also the calculated TAC energies are included in panes (c) and (d).**

Energy

l **The 2-quasiparticle neutron configuration K = 8+ component is assigned to the t-band.** l **The 4-quasiparticle configuration K = 9 component is assigned to band D1.** l **The difference between calculated and experimental energies for D1 band can be reduced by**

taking into account the

triaxial deformation.

Comparison of the calculated PSM energies with available data for 130Ba. For the *t***-band,** *D***1and** *K***π=8− bands, also the calculated TAC energies are included in panes (c) and (d).**

p **B(E2)out/B(E2)in and B(M1)/B(E2)**

- The calculated B(E2)_{out}/B(E2)_{in} values are in good **agreement with the experimental data for all bands.**
- l **The discrepancy is caused by too small calculated B(M1)values. The analysis of the PSM wave functions shows that the Kπ=8−band is strongly mixed with the neutron 2-qp band** $vh_{11/2}[7/2]$ ⊗**νg7/2[7/2], Kπ=7−band.**

\Box Deformed shell gap in light rare-earth nuclei

- l **Z. Patel et al. Phys. Rev. Lett. 113(2014) 262502, the predicted deformed shell closure is at N=100.**
- R. Yokoyama et al. Phys. Rev. C 95(2017) 034313, new isomers can be **explained without the predicted N=100 shell gap.**
- l **J. Wu et al. Phys. Rev. Lett. 118(2017) 072701, the authors could not find a convincing signature in the half-life trend to confirm the evidence for a deformed subshell gap at N=100.**
- l **D. J. Hartley et al. Phys. Rev. Lett. 120(2018) 182502, the existence of the N= 98 deformed subshell gap.**

Question

The existence of neutron shell gap at N=98 or N=100 is currently a question under debate, which needs to be investigated further by theoretical and experimental studies.

Y. X. Liu et al. Changes of deformed shell gaps at N∼**100 in light rare-earth, neutronrich nuclei, J.Phys. G 47 (2020) 055108.**

 \checkmark propose a modification for the "standard" Nilsson parameters, \checkmark ground state configuration in odd-neutron nuclei, upbending of the yrast moment **of inertia at higher spins and the energies of 2-quasineutron 6− and 4− isomers in even-even nuclei**

Studies of 162 Eu₆₃ (N=99)

94 β -Decay Half-Lives of Neutron-Rich ₅₅Cs to $_{67}$ Ho: Experimental Feedback and Evaluation of the r-Process Rare-Earth Peak Formation

J. Wu,^{1,2,2} S. Nishimura,² G. Lorusso,^{2,3,4} P. Möller,⁵ E. Ideguchi,⁶ P.-H. Regan,^{3,4} G. S. Simpson,^{7,8,9} P.-A. Söderström,² P. M. Walker,⁴ H. Watanabe, ^{10,2} Z. Y. Xu, ^{11,12} H. Baba,² F. Browne, ^{13,2} R. Daido, ¹⁴ P. Doornenbal,² Y. F. Fang, ¹⁴ G. Gey,^{7,152} T. Isobe,² P. S. Lee,¹⁶ J. J. Liu,¹¹ Z. Li,¹ Z. Korkulu,¹⁷ Z. Patel,^{4,2} V. Phong,^{18,2} S. Rice,^{4,2} H. Sakurai,^{2,12} L. Sinclair,^{19,2} T. Sumikama,² M. Tanaka,⁶ A. Yagi,¹⁴ Y.L. Ye,¹ R. Yokoyama,²⁰ G. X. Zhang,¹⁰ T. Alharbi,²¹ N. Aoi,⁶ F.L. Bello Garrote,²² G. Benzoni,²³ A.M. Bruce,¹³ R.J. Carroll,⁴ K.Y. Chae,²⁴ Z. Dombradi,¹⁷ A. Estrade,²⁵ A. Gottardo, ^{26,27} C. J. Griffin, ²⁵ H. Kanaoka, ¹⁴ I. Kojouharov, ²⁸ F. G. Kondev, ²⁹ S. Kubono, ² N. Kurz, ²⁸ I. Kuti, ¹⁷ S. Lalkovski, ⁴ G. J. Lane, ³⁰ E. J. Lee, ²⁴ T. Lokotko, ¹¹ G. Lotay, ⁴ C.-B. Moon, ³¹ H. Nishibata, ¹⁴ I. Nishizuka, ³² C. R. Nita, ^{13,33} A. Odahara, ¹⁴ Zs. Podolyák, ⁴ O. J. Roberts, ³⁴ H. Schaffner,²⁸ C. Shand,⁴ J. Taprogge,^{35,36} S. Terashima,¹⁰ Z. Vajta,¹⁷ and S. Yoshida¹⁴ $152Ba$ 0.139(8) $156p_0$ 0.444(6)

10.6 (1) s from Gd X-rays Greenwood et al. PRC 35 (1987) 1065

However, such interpretations cannot account for the existence of 3- and 2- longlived states in 162Eu.

The long-lived levels in 162Eu can be assigned the π5/2[413] ⊗ **ν7/2[633] configuration with Kπ=1+ assigned to the ground state and Kπ= 6+ to the isomer. This interpretation is consistent with the observed decay pattern in 162Eu and can explain the observed isomerism in this nucleus.**

> N $\beta^ 7/2[514]$ 106 104 $5/2[512]$ $1/2[521]$ π 5/2[413] v7/2[633] 102 $7/2[633]$ 100 - 5/2[523] $3/2[521]$ 2773 $-5/2[642]$ 3108 $v^2(5/2[523], 7/2[633])$ - 3/2[651] - 11/2[505] $-3/2[402]$ 162 Gd deviations from WS, Nilsson & folded-Yukawa ordering of the 1/2[521] and 7/2[633] neutron orbitals

Studies of ¹⁶²Eu (N=99) cont.

F. G. Kondev et al., Nucl. Phys. A617 (1997), 91.

Studies of 162Eu (N=99) cont.

Figure 3. Nilsson diagram generated with the 'standard' set of parameters (κ , μ) of Bengtsson and Ragnarsson [26]. The values for the neutron $n = 6$ shell are $\kappa = 0.062$, $\mu = 0.34$.

 162 Gd

How can we interchange the ordering of 1/2[521] and 7/2[633] neutron orbitals? A simple modification can be achieved to move the neutron *i***13/2 intruder state down properly while keeping the other nearby orbitals unchanged.**

\Box Reproduce correct order of single particle orbit

 (k, μ) New = (1 - 0.015|*N* - 102|) (k, μ) *N*=102

	1000			5/2[523] (a)	$N=97$		(b) v 7/2[633]	$N = 99$		1/2[521] (c)	$N = 101$
keV) ξğ 띧	800		17/2	17/2 17/2	17/2				$-17/2$	$=$ ^{17/2}	$-17/2$
	600		$15/2^{-}$	15/2	15/2	$17/2$ [*]	$17/2$ [*]	$17/2$ [*]			
	400		$13/2^{-}$	13/2 13/2	13/2	$15/2$ [*] $13/2$ [*]	$15/2$ ⁺ $15/2$ ⁺ 13/2 [*] 13/2 [*]	$15/2^*$ $13/2$ [*]	13/2	13/2	13/2
	200		11/2 9/2	11/2 9/2 9/2	11/2 11/2 9/2 9/2	$11/2$ [*]	$11/2$ [*] $11/2$ [*]	11/2	9/2	9/2	9/2
	0	5/2	7/2 5/2	7/2 5/2 5/2	7/2 7/2 5/2	9/2 7/2	9/2 9/2 7/2 7/2	9/2 $7/2$ [*] 5/2, 7/2	5/2	5/2 1/2 1/2	5/2 1/2
	-200		Exp PSM 157 Nd	Exp PSM 159 Sm	Exp PSM 161 Gd	Exp PSM 159 Nd	Exp PSM 161 Sm	Exp PSM 163 Gd	Exp PSM 161 Nd	Exp PSM 163 Sm	Exp PSM 165 Gd

FIG. 1: Calculated ground state bands of odd-neutron nuclei with neutron number $N = 97$, 99 and 101 at $Z = 60$ (Nd), 62 (Sm) and 64 (Gd) with new set of Nilsson parameters. Data are taken from Refs. [2, 15, 26–29]

FIG. 2: Calculated ground state bands of odd-neutron nuclei with neutron number $N = 101$, 103, 105, and 107 at $Z = 70$ (Yb) and 72 (Hf) with new set of Nilsson parameters. Data are taken from Refs. [30–35]

Reproduce correct order of single particle orbit

 (k, μ) New = (1 - 0.015|*N* - 102|) (k, μ) *N*=102

FIG. 1: Calculated ground state bands of odd-neutron nuclei with neutron number $N = 97$, 99 and 101 at $Z = 60$ (Nd), 62 (Sm) and 64 (Gd) with new set of Nilsson parameters. Data are taken from Refs. [2, 15, 26–29]

- l **Especially, for neutron number N=99 and 101, the order of 1/2−[521] and7/2+[633] is interchanged and consistence with the experimental observation.**
- l **These represent a clear example that due to changes in neutron/proton ratio, the traditional Nilsson model for the stable mass region cannot be directly applied for the neutron-rich region.**

FIG. 2: Calculated ground state bands of odd-neutron nuclei with neutron number $N = 101$, 103, 105, and 107 at $Z = 70$ (Yb) and 72 (Hf) with new set of Nilsson parameters. Data are taken from Refs. [30–35]

\Box Deformed shell gap at N~100

l **The correct placement of the 1/2− [521] neutron orbital opens a subshell closure at N=98 with neutron number N=96 − 100. The location and size of the shell gaps change with neutron number and deformation.**

□ Isomer states for N~100 nuclei

- l **This disagreement with data can be understood as mainly due to the wrong calculation for the N=98 shell gap and its relative size to the N=100 shell gap.**
- l **We emphasize that the 2-qp isomer energy can be sensitively related to deformed shell gaps in the neutron-rich regions as well as precise locations of the quasiparticles that build the isomeric states. Systematical experimental data for such isomers are much desired.**

The calculated bandhead energies of isomer states for Nd, Sm, and Gd isotopes with new and standard (labeled by 'Old') Nilsson parameter and comparison with the available data for (a) at $N=98$, (b) $N=100$ and (c) $N=102$. The configuration of $K^{\pi}=4^-$ is $v1/2[521]+ v7/2[633]$. The configuration of $K^{\pi}=6^-$ is $v5/2[523]+ v7/2[633]$ for (a) and (b), $\sqrt{5/2}$ [512] + $\sqrt{7/2}$ [633] for (c). The configuration of $K^{\pi}=6$ ⁻(1) in (b) is $\sqrt{5/2}$ [512] + $\sqrt{7/2}$ [633].

□ Isomer states for N~100 nuclei

A~130

ü **Confirmation of the S-bands built on prolate 2qp-proton and oblate 2qp-neutron configurations.** ü **Good description of t-band and D-band.**

ü**Deformed shell gap is dependent on the order of single particle orbit, deformation and neutron number.** ü**The new formulation need to be checked in other nuclear region.**

New order of 1/2−[521] and7/2+[633] single particle orbit was confirmed.

- **C. J. Zachary et al., Phys.RevC. C 101, 054312 (2020)**
- **E. H. Wang et al., Phys.RevC. 103, 014317 (2021)**
- **R. Yokoyama et al., Phys.RevC. 104, L021303 (2021)**
- **M. J. Burns et al., Phys.RevC. 106, 054308 (2022)**

A~160

Thank you for your attention!

CSNSM group, Orsay:

Costel Petrache, A. Astier et al.

Nuclear Structure group in IMP:

S. Guo, X.H. Zhou, M.L. Liu, J. G. Wang, , Y.H. Qiang, Y. D. Fang, Guangshun Li, et al.

University Notre Dame:

S.Frauendorf

East China Normal University:

Q.B. Chen

Argonne National Laboratory

Filip G. Kondev

SJTU: Yang Sun, Cuijuan Lv

backup

