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Tilted precession and wobbling?

Precession – only rotations
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Wobbling – phonon excitation
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Rotation of even-even triaxial nucleus: tilted precession
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Wobbling phonon excitations
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J →  wobbling phonon
where n is the number of the phonons, 

 is the vibrational frequency

Coupling of rotation and vibration phonon excitation
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Looking for the relationship between the two descriptions 

based on rotational and vibrational excitations…

at high spin these two descriptions are similar!!!

Bohr and Mottelson, Nuclear Structure



What is “high spins”?

PRC, 101, 034306 (2020)

f(n, I) < 0.15 for (n = 1 , I > 20) 

(n = 2 , I > 34)

If the condition is satisfied
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Bohr and Mottelson, Nuclear Structure
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What does it mean that if the approximation condition is valid 

the two descriptions are similar ?
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Rotational phonon excitation

Rotational bands have similar features to 

harmonic wobbling phonon excitation
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Precession is similar to harmonic phonon excitation

Precession is equivalent to anharmonic phonon excitation 
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What at low spins where the approximation condition is not valid ?
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Rotational phonon excitation

Rotational bands differ substantially from 

harmonic wobbling phonon excitation
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The rotational and the vibrational descriptions are two different (competing) interpretations
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Rotation of even-even triaxial nucleus: tilted precession Empirical evidence for MoI
from measured energies and 
electric quadrupole matrix elements
follow hydrodynamical MoI
dependence of 

J.M. Allmond, J.L.Wood, 
Physics Letters B 767 (2017) 226–231 
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▪ R1 projection of I on the intermediate axis, 
▪ R1 is good q.n.
▪ R1 = I, I - 1, I - 2….
▪ each R1 → a rotational band

With hydrodynamical-type MoI for  = 30o there is a symmetry in 

H  because 2 (short) = 3 (long)  = ¼ 1
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R1 = I, I - 1, I - 2…. = I – m, where m = 0,1,2,3…
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Quadratic dependence on I
Quadratic dependence on m

rotational 
nature

Rotation of even-even triaxial nucleus: tilted precession

g.s. band  band

R1 = I → g.s. band

R1 = I - 1 →  band, odd spins

R1 = I - 2 →  band, even spins
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Wobbling due to phonon excitation

Precession in the  band approximated at high spins with wobbling phonon
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the quantization characteristics of phonon excitations:

• quantization in energy, E(I, n) = n E(I, 1), i.e. E(I,n=2) = 2 E(I,n=1)

• quantization in B(E2)out,     B(E2; n → n-1) = n B(E2; 1 → 0),

eg B(E2; n=2 → n=1) = 2 B(E2; n=1 → n=0),

• decays between the even-spin members of  the  band and the g.s. band are 

forbidden (simultaneous destruction of two phonons)

g.s. band
0-phonon

1-phonon
wobbling
odd spins
of  band

2-phonon
wobbling
even spins
of  band

E2

E2

E2

E2

at high spins

E2
x

Tilted precession due to rotation 
Precession in the  band at low spins (for  = 30o)
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• The energy E(I, n) depends on m in quadrature, the quadratic term is 

small if  m << 2I

• no quantization required  in B(E2)out, 

eg B(E2; n=2 → n=1)   2 B(E2; n=1 → n=0),

• decays between the even-spin members of  the  band the g.s. band are 

allowed

 band in triaxial-rotor model is 

understood as precession

It looks like anharmonic wobbling 

at high spins



g.s. band
m = 0

2+  band
m = 2

4+  band
m = 4

Excited bands:

energy for TRM and for phonon excitations

2+  band
m = 1

4+  band
m = 3

Phonon excitation
linear

Triaxial rotor
quadratic

E

At high spins the rotational energy 
is large and E can be small,
anharmonic vibration



B(E2) transition probabilities:

TRM and phonon excitations
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Considerable differences in the B(E2) probabilities for tilted precession and wobbling phonons
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Rotation of triaxial nucleus: tilted precession

g.s. band

 band

J. Meyer-ter-Vern, Nucl. Phys. A 249, 111 (1975)
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 band is precession 
(rotational nature)

Since its introduction in the 1950s wobbling has been searched for in even-even nuclei for many decades.
Many  bands were discovered at low spins, some of them have been interpreted using the triaxial-rotor model, but they 
were never considered as wobbling…
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Precession in odd-mass nuclei

j

PRC, 101, 034306 (2020)

Longitudinal coupling:

→ phonon approximation is applicable at high spins;

anharmonic phonons

Transverse coupling:

→ phonon approximation is not valid at any spin
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How to identify wobbling phonons?

0-phonon
1-phonon
wobbling

2-phonon
wobbling

(M1)+E2

(M1)+E2

(M1)+E2

(M1)+E2
• dominant E2 nature of linking transitions  

signifying collective nature of the excitation          

• there are other cases with dominant E2 nature, eg tilted precession, 

decay out of K = 2  vibrational band (small  vibrations around an 

average axially symmetric shape), and others….

• To identify wobbling phonon excitation we should check for phonon quantization,

eg quantization in excitation energy, in B(E2)s, in B(M1)s…

triaxial rotor model – odd mass 

nuclei

low spins high spins

Longitudinal coupling precession precession equivalent to anharmonic wobbling

Transverse coupling precession precession



The precession of triaxial nuclei with configurations

of frozen h11/2 and  h11/2    h11/2
-1 type

Frozen  h11/2, 

hydrodynamic MoI,  = 30o
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identical
behaviour 

??

0

5000

10000

15000

20000

25000

30000

4 6 8 10 12 14 16 18 20 22 24

En
er

gy
 (

ke
V

)

Spin I

b1

b2

b3

b4



The precession of triaxial nuclei with configurations

based on frozen h11/2 and  h11/2    h11/2
-1 type
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Summary

R||

R ⊥

Triaxial rotor model low spins high spins

Even-even precession precession is equivalent to anharmonic wobbling phonon excitation

Longitudinal coupling precession precession is equivalent to anharmonic wobbling phonon excitation

Transverse coupling precession precession

Triaxial rotor model → precession with rotational nature similar to the precession of a rotating top

When approximation condition is not valid there are considerable differences between the 

calculated rotational and wobbling bands, eg in excitation energy, and the B(E2) probabilities, 

and these two descriptions should be considered as different interpretations.

Wobbling excitation should have the characteristic features of all phonon excitations – quantization 

in Eexc, B(E2)s, B(M1)s

The similarities in the behaviour of the calculated  h11/2 and  h11/2    h11/2
-1 bands, 

including in excitation energies, rotational and total angular momenta are attributed to the 

same behaviour of the total angular momentum, which moves away from the short axis (short-

long plane) for the former (latter) configuration.
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