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The Content of the Present Project

1) Nuclear Structure Physics Elements:

Realistic Phenomenological Mean-Field Theory,
Nuclear Shapes, Their Symmetries and Quantum Manifestations,

Quantum Rotors with Exotic Symmetries,
Experimental Criteria of Symmetry Identification

2) Mathematical-Physics Elements:

– Inverse Problem Theory (controlling parameter optimisation)

– Group-, and Group Representation Theories (symmetries)

– Graph Theory (nuclear motion in deformation spaces)
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Partial Source of Input for the Present Project

• Exotic shape symmetries around the fourfold octupole magic
number N = 136: Formulation of experimental identification

criteria

PHYSICAL REVIEW C 105, 034348 (2022)

• Exotic symmetries as stabilizing factors for superheavy nuclei:
Symmetry-oriented generalized concept of nuclear magic numbers

PHYSICAL REVIEW C 106, 054314 (2022)

• Islands of oblate hyperdeformed and superdeformed superheavy
nuclei with D3h point group symmetry in competition with other

D3h states: “Archipelago” of D3h-symmetry islands

PHYSICAL REVIEW C 107, 054304 (2023)

– – – – – – – – – –

• These texts employ the language of “magic numbers” despite
rather historical background of this notion
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Part I

Historical Notion of Magic Numbers

Via Separation Energies

From 1963 Nobel Prize to the XXI Century
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Stability of Nuclei from Particle Removing Experiments → Nobel Prize

• Observe characteristic differences between
the nucleonic and electronic separation spectra

• The 1963 Nobel Prize for the study of the
nuclear effect to M. Göppert-Mayer, J. Jensen
and E. Wigner↔ See: “Shell Model of Nuclei”

• In atomic nuclei the highest-j orbital in an
N-shell is ejected to the (N-1st)–shell below it

• The big gaps at Z/N = 20, 28, 50, 82, 126
are confirmed by spin-orbit mean-field coupling
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Nuclear Spin-Orbit Splitting – Textbook Version

• Original from Mayer and Jensen reprinted by Bohr and Mottelson
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From Separation Energies To the Many-Body Mean-Field Concept

• Removing the particles we learn about interactions with the others

• A mean-field interaction can be seen as an algorithm probing the
two-body interactions through a generalised weighted average ↔ V̂

V̂ (x̂) = 1
N−1

∑(N−1)
j=1

∫
dxj ψ

∗(xj ) V̂ (x̂, x̂j )ψ(xj )

• Observe that summation above implies an
averaging over all (N-1) remaining particles

• Observe also that the resulting mean-field
potential V̂ = V̂ (x̂) is a one-body operator

• Right: An artist view of the binding energy
experiment as the average interaction tests

• The mean field potential binding non-
interacting nucleons→ is a simple container

An N−Body System

Schematic: Probing 2-body
interactions with an ‘external’

test-particle
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.

.

Ground−State− and Shape−Coexisting Masses

There exist powerfull Mean−Field Theories

Hartree−Fock     Relativistic (RMF) Phenomenological
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Part II

Mean-Field Approach Selected for This Project:

Realistic Phenomenological (Woods-Saxon) Mean-Field
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Description of Nuclear Deformation [or Shapes]

• Given nuclear surface, Σ. It can generally be expanded in terms
of spherical harmonics {Yλµ(θ, φ)} with complex coefficients {αλµ}

R(  ,  )θ φ
Σ

The lowest rank deformations:

→ α2µ - quadrupole
→ α3µ - octupole
→ α4µ - hexadecapole

• The formal expansion [standard form]:

R(θ, φ) ∼ Ro

[
1 +

∑

λµ

αλµYλµ(θ, φ)

]
;

= a multipole expansion about the sphere

• Parameters {αλµ}, are usually called
deformations or shape degrees of freedom

• For the time-dependent description
e.g., collective vibrations or rotations:

αλµ = αλµ(t)
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W-S Mean-Field is a Functional of distΣ(~r )

Given surface Σ

y

x

z

Σ

dist   (x,y,z)
Σ

P(x,y,z)

Constructing distance function

Phenomenological Woods-Saxon
potential respects automatically
the symmetries of the underlying
surface Σ:

V̂WS
Cent(~r ) ≡ V0

1 + exp{distΣ(~r )/a}

V̂WS
S−O(~r ) ≡

[
∇VWS

Cent(~r )∧ p̂
]
·~s

V̂mf = V̂WS
Cent + V̂WS

S−O + V̂C

Surface Σ : R(ϑ, ϕ) = Ro c({α})
[
1+
∑

λ

∑λ
µ=−λ αλ

µYλµ(ϑ, ϕ)
]

Hamiltonian: Ĥm−f = T̂ + V̂m−f
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Mean-Field Hamiltonian and Its Parameters

• More precisely, we have 3 parameters for the central potential

V̂WS
Cent(~r , α;V c , r c , ac) =

V c

1 + exp[distΣ(~r , r c ;α)/ac ]
, ↔ V c

1 + exp[(r − Rc)/ac ]
,

and 3 parameters for the spin-orbit potential

V̂ so
WS(~r , p̂, ŝ, α;λso , r so , aso) =

2 ~c2

(2m∗)2
[(~∇V so

WS) ∧ p̂ ] · ŝ,

where
V so

WS(r , α;λso , r so , aso) =
λso

1 + exp[distΣ(~r , r so ;α)/aso ]
,

– – – – – – – – – – – – – – – – – – – – –– – – – – – – – – – – – – – – – – – – – –

• Our Hamiltonian formally depends on the two sets of 6 parameters each,

{V c , r c , ac , λso , r so , aso}π,ν

• They are fitted to experimental values of single-nucleon level-energies in

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd, 208Pb
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Parameters: Their Possible Statistical In-Significance

• Attention: χ2-fitting is just the beginning; it must be accompanied
by a number of operations assuring a minimum of stochastic sense

About the So-Called Chi-By-the-Eye “Method”

• In their introduction to the book chapter ‘Modelling of Data’, the
authors of ‘Numerical Recipes” (p. 651), observe with sarcasm:

”Unfortunately, many practitioners of parameter estimation never proceed

beyond determining the numerical values of the parameter fit. They deem

a fit acceptable if a graph of data and model ‘ l o o k s g o o d ’.

This approach is known as chi-by-the-eye. Luckily, its practitioners get

what they deserve” [what is meant is: “they” obtain a ‘meaningless result’]

Meaningless result ← less politely → Equivalent to random numbers
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Role of Parameter-Correlation Removal – Part 1

• One demonstrates within Inverse Problem Theory
an importance of removal of parameter correlations

• We determine the existence and remove parameter
correlations employing Monte-Carlo simulations ∗)

Central Potential Parameter Correlations
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∗) See PHYSICAL REVIEW C 103, 054311 (2021) and references therein
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Role of Parameter-Correlation Removal – Part 2

• Parametric correlations present

Parameter Distribution: Nlev. = 45π, 60ν
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Central Depth V c
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µ(V c
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FWHM = 1.221

2.355 σ̄ = 1.215 (stan.dev.)

∫
P (x) dx = 1
r% = 100%

Pb208
82 126

Probability of Uncertainty. Here: Central potential depth,
V c

0 , for Woods-Saxon Universal
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Role of Parameter-Correlation Removal – Part 3

• Parametric correlations removed

Parameter Distribution: Nlev. = 45π, 60ν
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Role of Parameter-Correlation Removal – Part 4

• Parametric correlations present

Parameter Distribution: Nlev. = 45π, 60ν
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Role of Parameter-Correlation Removal – Part 5

• Parametric correlations removed

Parameter Distribution: Nlev. = 45π, 60ν
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Consequences for Our Project

• Our total energy calculations are performed using the
Hamiltonian parametrisation with parametric correlations removed

• According to Inverse Problem Theory this assures
maximum stochastic stability of modelling predictions
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Part III

Contemporary View of Octupole
‘Magic Numbers’

Through Phenomenological
Realistic Mean Field Hamiltonian
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Below we present selected results about:

4-Fold Octupole Magic Number N = 136

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Octupole 4-Fold Magic Number N = 136: Begin with (α30 and α31)

• Mean-field Q̂λ=3 repulsion between 2g9/2 and 1j15/2 neutron orbitals
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• Notice octupole N = 136 shell gap above spherical N = 126 shell gap
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Octupole 4-Fold Magic Number N = 136: Follow with (α32 and α33)

• Mean-field Q̂λ=3 repulsion between 2g9/2 and 1j15/2 neutron orbitals
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Nucleon Levels in Woods-Saxon Mean Field

• Notice octupole N = 136 shell gap above spherical N = 126 shell gap
To emphasise: Tetrahedral symmetry gap α32 almost as large as N = 126
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Comments: Why 4-Fold Magic number?

• Observe that in contrast to the traditional magic numbers
applying to spherical symmetry – the octupole magic numbers
“remain magic and the same” for four different symmetries

• Thanks to the octupole 4-fold magic number N = 136, the
multipoles λ = 3 (octupole) rather than λ = 2 (quadrupole)
introduce non-sphericity↔ exotic deformations & symmetries

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China
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Pb Looses Sphericity for N = 130, 134, ... Because of α3µ and NOT α2µ

208Pb
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Super-Octupole Magic Number N=136 in 218Pb: α30 and exotic α31

218Pb
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• Note the predicted octupole (not quadrupole) non-sphericity: 218Pb136

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Super-Octupole Magic Number N=136 in 218Pb: Exotic α31 and α32

• Large barriers, over 3 MeV, separating double tetrahedral minima

218Pb
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• Note the predicted octupole (not quadrupole) non-sphericity: 218Pb136
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Super-Octupole Magic Number N=136 in 218Pb: Exotic α32 and α33

• Large barriers, over 3 MeV, separating double tetrahedral minima
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• Note the predicted octupole (not quadrupole) non-sphericity: 218Pb136
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Good News When Looking for Exotic Symmetries!!

• In this project Exotic Symmetries are defined as
anything but ellipsoidal (α20, α22) or pear-shape (α20, α30)

• Emphasise that often a polarisation of a doubly-magic nucleus by
(N0,Z0)→ (N0 ±∆N,Z0 ±∆Z)

leads to prolate/oblate/ellipsoidal deformations – thus “not for us”

• Thanks to the octupole 4-fold N = 136 magic number
multipoles λ = 3 (octupole) rather than αλ=2 (quadrupole)

introduce the sought exotic deformations & symmetries

• Therefore thanks to the leading role of αλ=3,µ multipoles
→ We arrive at the “mine of exotic (molecular) symmetries”

What are these exotic molecular symmetries?
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Graphical Illustration: Molecular (Point-Group) Symmetries - Part 1

• Symmetry induced by both α31 6= 0 and (α20 6= 0, α31 6= 0)

α 3, 1 = 0.25
Deformation:

Figure:α31 = 0.25

α 2, 0 = 0.15
α 3, 1 = 0.25

Deformations:

Figure:α20 = 0.15, α31 = 0.25

Nuclear C2v Point Group Symmetry

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Graphical Illustration: Molecular (Point-Group) Symmetries - Part 2

• Symmetry induced by both α33 6= 0 and (α20 6= 0, α33 6= 0)

α 3, 3 = 0.25
Deformation:

Figure:α33 = 0.25

α 2, 0 = 0.15
α 3, 3 = 0.25

Deformations:

Figure:α20 = 0.15, α33 = 0.25

Nuclear D3h Point Group Symmetry

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Graphical Illustration: Molecular (Point-Group) Symmetries - Part 3

• Symmetry induced by α32 6= 0 and (α20 6= 0, α32 6= 0)

α 3, 2 = 0.25
Deformation:

Figure:Tetrahedral Td: α32 = 0.25

α 2, 0 = 0.15
α 3, 2 = 0.25

Deformations:

Figure:D2d: α20 = 0.15, α32 = 0.25

Nuclear Td and D2d Point Group Symmetries

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Having introduced exotic symmetries:

Let us enter what we call

New Spectroscopy: Issues & Challenges

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Rotating High-Rank Symmetric Nuclei

Seen Through Group-Representation Theory

[Example: Tetrahedral Symmetry Quantum Rotors]

Remarks for theorists / not essential for discussing conclusions →

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



MATHEMATICS: Simple Theorems of Group-Representation Theory

• Let G be the symmetry group of the quantum rotor Hamiltonian

• Let {Di , i = 1, 2, . . . M} be the irreducible representations of G

• The representation D(Iπ) of the rotor states with the definite spin-

parity Iπ, can be decomposed in terms of Di with multiplicities a
(Iπ)
i :

D(Iπ) =
∑M

i=1 a(Iπ)
i Di

• Multiplicities [M. Hamermesh, Group Theory, 1962] are given by:

a(Iπ)
i =

1

NG

∑
R∈G

χIπ(R)χi (R) =
1

NG

M∑
α=1

gαχIπ(Rα)χi (Rα);

NG : order of the group G ; {χIπ(R), χi (R)}: characters of {D(Iπ),Di}
R: group element; gα: the number of elements in the class α, whose
representative element is Rα.
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MATHEMATICS: Elementary Td-Group Properties: Part I

• Tetrahedral group has 5 irreducible representations and 5 classes

• The representative elements {R} are: E , C2 (= S2
4 ), C3, σd , S4

• The characters of irreducible representation of Td are listed below

Td E C3(8) C2(3) σd (2) S4(6)

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0

F1(T1) 3 0 −1 −1 1
F2(T2) 3 0 −1 1 −1

• The characters χIπ(Rα) for the rotor representations are as follows:

χIπ(E) = 2I+1, χIπ(Cn) =
I∑

K=−I

e
2πK
n

i , χIπ(σd ) = π×χIπ(C2), χIπ(S4) = π×χIπ(C4)

• From these relations we obtain ‘employing the pocket calculator’:

a
(Iπ)
i =

1

NG

M∑
α=1

gαχIπ(Rα)χi (Rα) ↔ a
(I±)
A1

= a
(I∓)
A2

, a
(I+)
E = a

(I−)
E , a

(I±)
F1

= a
(I∓)
F2
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MATHEMATICS: Elementary Td-Group Properties: Part II

• The number of states a
(Iπ)
i within five irreducible representations.

If a
(Iπ)
i = 0 → states not allowed; a

(Iπ)
i = 2 → doubly degenerate

I+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+

A1 1 0 0 0 1 0 1 0 1 1 1
A2 0 0 0 1 0 0 1 1 0 1 1
E 0 0 1 0 1 1 1 1 2 1 2

F1(T1) 0 1 0 1 1 2 1 2 2 3 2
F2(T2) 0 0 1 1 1 1 2 2 2 2 3

I− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10−

A1 0 0 0 1 0 0 1 1 0 1 1
A2 1 0 0 0 1 0 1 0 1 1 1
E 0 0 1 0 1 1 1 1 2 1 2

F1(T1) 0 0 1 1 1 1 2 2 2 2 3
F2(T2) 0 1 0 1 1 2 1 2 2 3 2

• In this way we find the spin-parity sequence for A1-representation

A1 : 0+, 3−, 4+, 6+, 6−, 7−, 8+, 9+, 9−, 10+, 10−, 11−, 2× 12+, 12−, · · ·

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Concluding: ‘Take Home’ Message

The bottom line for an experimentalist:

The tetrahedral ground-state band Iπ = 0+

is composed of the following states:

A1 : 0+, 3−, 4+, 6+, 6−, 7−, 8+, 9+, 9−, 10+, 10−, 11−, 2× 12+, 12−, · · ·

Its structure has not much in common
with the “usual” one(s), e.g.:

Iπ = 0+, 2+, 4+, . . .

and implies a new way of thinking (and acting)

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China
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This Group Theory Result Is Obtained Directly

by HFB Angular Momentum and Parity Projection
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Next Steps in the Procedure: Identifying Td Symmetry

We Proceed Looking for Experimental Candidate States

Criterion no. 1:
We have demonstrated that collective E1 or E2 transitions are for-
bidden in the tetrahedral symmetry limit → may lead to isomers

Criterion no. 2:
Accepted states must neither be populated nor depopulated by any
strong E1 or E2 transitions, preferably populated by nuclear reaction

Criterion No. 3:
Their energies should be ‘reasonably’ close to the reference parabola

Observation:
Since they do not decay via a single strong transition it is instructive
verifying that they decay into several states – with weak intensities

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Next Steps in the Procedure: Part 2

A typical diagram among a hundred in this analysis

Feedig the tetrahedral Iπ = 3− candidate (among five others)

Let us note that 3− does not decay to the 0+ ground-states (suggesting that it is
not an octuple vibrational state built on the other) and that there are numerous
states populating it suggesting that its structure is exotic from our point of view.

[By the way, this state was not retained at the final steps]

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Next Steps in the Procedure: Part 2

A typical diagram among a hundred in this analysis

Decay from the tetrahedral Iπ = 3− candidate (among five others)

Let us observe that this state decays to many others suggesting its ‘exotic’
structure of interest in our context

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Next Steps in the Procedure: Part 2

A typical diagram among a hundred in this analysis

Decay from the tetrahedral Iπ = 4+ candidate level

Let us observe that this state decays to many others via very weak transitions
suggesting no resemblance to quadrupole-deformed rotational states...

and many, many other states analysed within this project...

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Another Example of the Spectra To Test Criteria

• We must try to find the sequence which is parabolic, no E2 transitions

4+, 6+, 8+, 10+ . . .

Experimental spectrum of 152Sm

By the way, band (T) was NOT retained in the final analysis

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Part III

About the Experimental Evidence∗)

for the First Tetrahedral Rotor Case: 152Sm

∗) J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee;

PHYSICAL REVIEW C 97, 021302(R) (2018)

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Quantum Rotors: Tetrahedral vs. Octahedral

• The tetrahedral symmetry group has 5 irreducible representations

• The ground-state Iπ = 0+ belongs to A1 representation given by:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

• There are no states with spins I = 1, 2 and 5. We have parity
doublets: I = 6, 9, 10 . . ., at energies: E6− = E6+ , E9− = E9+ , etc.

• One shows that the analogue structure in the octahedral symmetry

A1g : 0+, 4+, 6+, 8+, 9+, 10+, . . . , Iπ = I+︸ ︷︷ ︸
Forming a common parabola

A2u : 3−, 6−, 7−, 9−, 10−, 11−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

Consequently we should expect two independent parabolic structures

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Quantum Rotors: Tetrahedral vs. Octahedral

• The tetrahedral symmetry group has 5 irreducible representations

• The ground-state Iπ = 0+ belongs to A1 representation given by:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

• There are no states with spins I = 1, 2 and 5. We have parity
doublets: I = 6, 9, 10 . . ., at energies: E6− = E6+ , E9− = E9+ , etc.

• One shows that the analogue structure in the octahedral symmetry

A1g : 0+, 4+, 6+, 8+, 9+, 10+, . . . , Iπ = I+︸ ︷︷ ︸
Forming a common parabola

A2u : 3−, 6−, 7−, 9−, 10−, 11−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

Consequently we should expect two independent parabolic structures

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Quantum Rotors: Tetrahedral vs. Octahedral

• The tetrahedral symmetry group has 5 irreducible representations

• The ground-state Iπ = 0+ belongs to A1 representation given by:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

• There are no states with spins I = 1, 2 and 5. We have parity
doublets: I = 6, 9, 10 . . ., at energies: E6− = E6+ , E9− = E9+ , etc.

• One shows that the analogue structure in the octahedral symmetry

A1g : 0+, 4+, 6+, 8+, 9+, 10+, . . . , Iπ = I+︸ ︷︷ ︸
Forming a common parabola

A2u : 3−, 6−, 7−, 9−, 10−, 11−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

Consequently we should expect two independent parabolic structures

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Dominating Tetrahedral-Symmetry Hypothesis
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Experimental Results [Td -vs.-Oh]

Symmetry Hypotheses:

Tetrahedral: Td

Octahedral: Oh

A1 → r.m.s.=80.5 keV

A1g → r.m.s.=1.6 keV
A2u → r.m.s.=7.5 keV
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Graphical representation of the experimental data from the summary Table.
Curves represent the fit and are not meant ‘to guide the eye’. Markedly, point

[Iπ = 0+], is a prediction by extrapolation - not an experimental datum.
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Attention: These Perfect Parabolas Represent Experimental Results

• These two sequences represent the coexistence between tetrahedral and

octahedral symmetries. Curves represent the parabolas – and are not meant

to guide the eye. This is the first evidence based on the experimental data
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FROM: Spectroscopic criteria for identification of nuclear
tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)
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Those Are Predicted to Contain Long Life Isomers
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• If you work on exotic nuclei and wish to save millions measuring
long-lived isomers rather than short lived ground states – please join
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The ‘Take Home’ Message (II)

Part IV

Quantum Rotors

carrying other Point Group Symmetries

will be treated in full analogy

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Recall: Experimental Evidence for Td in 152Sm ↔ Alternative Plotting

The first tetrahedral symmetry evidence based on the experimental data

Tetrahedral Band : IπTd = 0+, 3−, 4+, 6±, 7−, 8+, 9±, 10±, 11−, . . .

→ Published in: J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)

• Analysing NNDC experimental evidence for 152Sm took 3 months of manual work
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Theory vs. Experiment: How to Identify Exotic Symmetries? → D2d Case

• Rotational band structure of a nucleus in a D2d-symmetry configuration

D2d → A1 : 0+,

2±,

3−,

2× 4+, 4−,

5±,

2× 6±,

7+, 2× 7−,

3× 8+, 2× 8−,
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4× 12+, 3× 12−, . . .

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

En
er

gy
(M

eV
)

0+
2+

4+

5+

6+

7+

8+

9+

10+

11+

12+

2−3
−

4−
5−

6−

7−

8−

9−

10−

11−

12−

Schematic Illustration

Symmetry D2d

Figure:Degeneracy pattern (α20, α32)
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Theory vs. Experiment: How to Identify Exotic Symmetries? → D3h Case

• Rotational band structure of a nucleus in a D3h-symmetry configuration
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Theory vs. Experiment: How to Identify Exotic Symmetries? → C2v Case

• Rotational band structure of a nucleus in a C2v-symmetric configuration

C2v → A1 : 0+,

1−,

2× 2+, 2−,

3+, 2× 3−,

3× 4+, 2× 4−,

2× 5+, 3× 5−,

4× 6+, 3× 6−,
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And now . . .

to our knowledge . . .

the world first experimental evidence

of the nuclear C2v symmetry in Actinides

234U and 236U
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Experimental Identification: Recent Results by our Group: 234U

• Rotational band structure of a nucleus in a C2v-symmetric configuration
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Experimental Results

Symmetry C2v

Attention: Experimental degeneracies for 234U according to NNDC

• Conclusions:

1) Single rotational band followed by 16 states with rms deviation 4.5 keV

2) Degeneracies characteristic for C2v-symmetry, even if partial, are there

3) Proposals for the new experiments to expand the evidence – called for
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Experimental Identification: Recent Results by our Group: 236U

• Rotational band structure of a nucleus in a C2v-symmetric configuration
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Experimental Results
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Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:

1) Single rotational band followed by 18 states with rms deviation 4.9 keV

2) Degeneracies characteristic for C2v-symmetry, even if partial, are there

3) Dashed lines represent the missing experimental levels - new proposals?
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Experimental Identification: Recent News

• Analysing NNDC experimental data for Td symmetry in 152Sm
took 3 months of manual work

• Collecting experimental evidence via NNDC for C2v in 236U
took 30 seconds of computer program∗)

∗) Collaboration with M. Martin, Simon Fraser University, Canada

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Experimental Identification: Recent News

• Analysing NNDC experimental data for Td symmetry in 152Sm
took 3 months of manual work

• Collecting experimental evidence via NNDC for C2v in 236U
took 30 seconds of computer program∗)

∗) Collaboration with M. Martin, Simon Fraser University, Canada

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Experimental Identification: Recent News

• Analysing NNDC experimental data for Td symmetry in 152Sm
took 3 months of manual work

• Collecting experimental evidence via NNDC for C2v in 236U
took 30 seconds of computer program∗)

∗) Collaboration with M. Martin, Simon Fraser University, Canada

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China



Part V

Large Amplitude Fluctuations:

Dynamical (Most Probable) Deformations
and

Energy-Doublets as Research Tools
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Collective Schrödinger Equation Approach

Flat energy landscapes provide a good example of

Ill-defined notion of nuclear equilibrium deformation

• We wish to calculate the most probable deformations resulting from
nuclear collective motion following Bohr theory∗) ({αλµ} → {qn} ↔ q)

• The corresponding collective Schrödinger equation has the form

ĤcolΨcol;i = Ecol;iΨcol;i ,

with
Ĥcol = −~2

2
∆ + V (q).

• Here, the constant mass is replaced by the mass tensor Bnm = Bnm(q)

∆ =
d∑

m,n=1

1√
|B|

∂

∂qn

(√
|B|Bnm ∂

∂qm

)
,

∗) See next slide: D. Rouvel and J. Dudek, PHYS. REV. C 99, 041303(R) (2019)
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For the Formalism followed – See the Article:
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Collective Motion Liberates New Degrees of Freedom

• Most importantly: The mass tensor enters the probability calculus

dV ≡ dq1 dq2 . . . dqn < ψ|Ô|ψ > =

∫
ψ∗Ôψ

√
det(B(q))dV

• Observe the space dependence (e.g. maxima and minima) of the

term
√
det(B(q)) thus influencing the most probable deformations
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Another Liberty Contained in Excitation Spectra

ĤcolΨcol;i = Ecol;iΨcol;i

Solution for i = 1 Solution for i = 2

• Observe varying number of maxima and of their relative positions
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Another Liberty Contained in Excitation Spectra

ĤcolΨcol;i = Ecol;iΨcol;i

Solution for i = 3 Solution for i = 4

• Observe varying number of maxima and of their relative positions
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Another Liberty Contained in Excitation Spectra

ĤcolΨcol;i = Ecol;iΨcol;i

Solution for i = 4 Solution for i = 5

• Observe varying number of maxima and of their relative positions
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Illustrations for a Simplified 1D Version

• Solutions of the collective Schrödinger equation can be used to
construct criteria of experimental verifications, e.g. energy doublets

• In the present case we will examine characteristic energy doublets

• Behaviour of those doublets depends on the separating barrier Vs

• This mechanism provides rich tools for experimental tests, Ref.∗)
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∗) Pedagogical discussions in S. C. Pancholi, “Pear-Shaped Nuclei”
(World Scientific, Singapore, 2020).
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Illustrations for a Simplified 1D Version

• We will simplify the illustrations with the help of 1D projections[
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]
Ψi (q) = Ei Ψi (q), with q = α33,

• Introduce an integral measure of the most probable deformation

|α|0,1
df .
=

∫
Ψ∗0,1(α)|α|Ψ0,1(α) dα→ 〈α2〉0,1
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• It turns out that the two measures of dynamical deformation are close and

|α|0,1 <
√
〈α2〉

0,1
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Illustration of the Role of the Average Inertia: Part 1

• We set B(q) → B(q) ↔ BMass and adjust it to examine the effect of
varying eigen-energies vs. top of the barrier, to begin with E0 ∼ (1/2)VB

[
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B(q)

d
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)(
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d

dq

)
+ V (q)

]
Ψi (q) = Ei Ψi (q), with q = α33,

〈|α|〉1 = 0.075

√
〈α2〉0 = 0.072

〈|α|〉0 = 0.066

E1 = 0.580 MeV√
〈α2〉1 = 0.079
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• Notice: {E0, ψ0} corresponds to π = + and {E1, ψ1} to π = −

• The two solutions with E0 = 0.51 MeV and E1 = 0.58 MeV are nearly de-
generate → Characteristic, nearly degenerate collective vibrational states
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Illustration of the Role of the Average Inertia: Part 2

• We proceed decreasing the average mass value to approach E0 ∼ VB

[
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(
1√
B(q)

d

dq

)(
1√
B(q)

d

dq

)
+ V (q)

]
Ψi (q) = Ei Ψi (q), with q = α33,

BMass = 80 h̄2MeV−1

〈|α|〉0 = 0.056

E1 = 2.346 MeV√
〈α2〉1 = 0.095

〈|α|〉1 = 0.089
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• Notice: {E0, ψ0} corresponds to π = + and {E1, ψ1} to π = −

• The two solutions with E0 = 1.02 MeV and E1 = 2.34 MeV are incompa-
rable, E2 more than double of the ground-state value → A clear difference

Such varying differences can help interpreting experimental results
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Illustration of the Role of the Average Inertia: Part 3

•We proceed decreasing the average mass value to approach E0 ∼ 2×VB

[
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(
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B(q)

d

dq
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d

dq

)
+ V (q)

]
Ψi (q) = Ei Ψi (q), with q = α33,

〈|α|〉1 = 0.117

√
〈α2〉0 = 0.081

〈|α|〉0 = 0.066

E1 = 5.768 MeV√
〈α2〉1 = 0.127
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• Notice: {E0, ψ0} corresponds to π = + and {E1, ψ1} to π = −

• The two solutions E0 = 1.96 MeV and E1 = 5.74 MeV differ still stronger

Such varying differences can help interpreting experimental results
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Superheavy Islands with D3h Exotic Symmetry
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Basing on this article a few illustrations

for super-heavy nuclei will follow
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Collective Solutions for a Normal Oblate Shape

• Below the mass tensor was calculated microscopically (new method)
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• The result of energy doublet E0 = 0.55 MeV and E1 = 0.57 MeV
can be seen as a realistic prediction from realistic mean field theory

If we can populate such a nucleus we should expect those doublets
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Illustrations for a Super-deformed Oblate Shape

• Below the mass tensor was calculated microscopically (new method)
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• The result of parity doublet E0 = 0.44 MeV and E1 = 0.53 MeV
can be seen as a realistic prediction from realistic mean field theory

If we can populate such a nucleus we should expect these doublets
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Illustrations for a Hyper-deformed Oblate Shape

• Below the mass tensor was calculated microscopically (new method)
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〈|α|〉0 = 0.152 〈|α|〉1 = 0.151
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• The result of parity doublet E0 = 0.24 MeV and E1 = 0.25 MeV
can be seen as a realistic prediction from realistic mean field theory

If we can populate such a nucleus we should expect these doublets
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Short Summary of This Part of the Discussion

• We have developed new formulation of the adiabaticity approach
to microscopic modelling of the nuclear collective inertia & tensor

• Collective vibrational excitations in 208Pb were reproduced without
parameter adjustments

• Collective inertia impacts the nuclear deformation probability

• These are those most probable (dynamical) equilibrium deforma-
tions which should be compared with experiment rather than static
deformation points
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Part VI
Summary: First Time Predictions & Challenges

• Systematic study of molecular symmetries in heavy and super-
heavy nuclei ← realistic phenomenological mean field Hamiltonian

• Modern Hamiltonian-optimisation using inverse problem theory

• Systematic derivation of the experimental identification rules of
molecular symmetries in nuclei with new rotational band properties

• Nuclear spectroscopy challenges ↔ Multiple level-degeneracies

• Discovery→ first experimental evidence of nuclear Td and C2v

symmetries – systematic predictions for heavy / super-heavy nuclei

• Large amplitude motion within new formulation of Bohr theory:

– New formulation of nuclear adiabaticity principles
– New calculation techniques for the nuclear inertia tensor
– New technique for dynamical vs. static equilibrium deformations

Jerzy DUDEK, University of Strasbourg & CNRS, France CWAN’23, Huizhou, China


