

Collectivity and chirality in neutron deficient ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs nuclei

Kuankuan Zheng (郑宽宽) IMP, CAS

Costel Petrache IJCLab, Université Paris-Saclay

Chirality and Wobbling in Atomic Nuclei, July 10 - July 14, 2023, Huizhou, China

Motivation

- Chirality

Experimental setupResults and discussion

- Isomer
- Chirality

Summary

Chirality

• It is a **common phenomenon** in nature.

It is a simple symmetry property of an object or system which cannot be superimposed onto its mirror image.

◆ It can occur in a **static** or **dynamic** regime.

 Chiral symmetry
 Chiral symmetry breaking (chirality)

 Hands
 Molecules
 Shells of sea snail

 Image: Chiral symmetry breaking (chirality)
 Image: Chiral symmetry breaking (chirality)

It should be pointed out that the chirality in nature is often static.

How about in nuclei ???

Nuclear Chirality

Chirality in nuclei was proposed in 1997 by Frauendorf and Meng.

Collective core (**R**); Quasi-proton (\mathbf{j}_{π}); Quasi-neutron (\mathbf{j}_{v}); Total angular momentum (I).

The nuclei exhibit the chirality when two conditions are satisfied, axial**asymmetry** and dynamic regime: triaxial shape, and rotating around an axis out of the principal planes of the intrinsic reference system.

Chiral operator: $\chi = TR(\pi)$

Time reversal + rotation

Nuclear Physics A, 617(2):131-147, 1997

Nuclear Chirality

The chiral phenomenon is spread over the different systems in **odd-odd**, **oddeven**, **even-even** nuclei with **complicated configurations**.

For a configuration with only neutrons? yes

The chirality is generated by a neutron $h_{11/2}$ particle and a mixed $(d_{5/2}, g_{7/2})$ hole aligned to the short and long axes, respectively.

For a configuration with only protons?

C. M. Petrache Phys. Rev. C 97, 041304(R). S. Zhu Phys. Rev. Lett. 91, 132501. S.J. Zhu Eur. Phys. J. A 25, s01, 459–462 (2005).

Motivation

The primary motivation is to study the evolution of the nuclear structure and exotic phenomena towards the proton drip line in the 120 mass region.

Nuclei of interest: ¹¹⁹Cs, ¹¹⁸Cs, and ¹¹⁹Ba.

To study the properties of **collective rotational bands** from low to very high spin and to identify and extract the half-lives of the **isomeric states**;

To search for **chiral doublet bands** and other exotic phenomena in the proton-rich deformed nuclei.

Experimental Setup

K.K.Zheng, CWAN'23, Huizhou

Location: JYFL;

Beam: ⁶⁴Zn, 255 MeV, 2-3 pnA;

Target: ⁵⁸Ni (self-supporting enriched), 0.75 mg/cm²;

Populated nuclei: ¹¹⁹Cs (150 mb), ¹¹⁹Ba (20 mb) , ¹¹⁸Cs (40 mb).

Data analysis

Data: 700 Gb

350 files

 4×10^{10} prompt γ -ray (fold ≥ 3) by JUROGAM 3 array. Trigger: Total Data Readout data acquisition system. Time-stamped: 100 MHz clock with the time resolution of 10 ns. Analysis: the GRAIN and RADWARE packages.

Setting of the low-energy thresholds, **energy calibrations**, gain matching, and **efficiency calibrations**

Doppler shift correction, add-back

Analysis of the $\gamma\gamma\gamma$, $\gamma\gamma\gamma$ + **recoil**, prompt $\gamma\gamma$ (target position) + delayed γ (focal plane) coincidences

Assignment of multipolarities by using R_{DCO} and R_{ac}

2

3

4

Results: The assignment of the bands to nuclei

The assignments of the bands to ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs are based on:

1. The mass 119 and 118 detected at the MARA focal plane in coincidence with transitions detected in JUROGAM 3;

2. The 31 and 32 keV K_{\alpha} X rays of cesium and barium nuclides detected in prompt coincidence with in-band transitions.

Combining information on the mass spectra and on the X-rays, we could assign new bands.

Results: Towards complete spectroscopy of ¹¹⁹Cs

K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 044305

K.K.Zheng, CWAN'23, Huizhou

Results: examples of energy spectra of ¹¹⁹Cs

K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 044305

Results: Towards complete spectroscopy of ¹¹⁹Cs

- The extension of the known bands to very high spin (B1 35/2-67/2) (B8 29/2-63/2);
- Identifying eight new rotational bands;
- All bands are interconnected by multiple transitions, thus fixing their relative intensities;
- Spins and parities are determined for most of the observed bands;
- The configurations of the observed bands are assigned based on PNC-CSM calculations.

The several new bands observed in ¹¹⁹Cs lead to one of the most complete level schemes of proton-rich Cs nuclei

Low-lying states: Long-lived 9/2⁺ (40 s) and 3/2⁺ (30 s) isomer were known;
Ground state: 9/2⁺ → 3/2⁺ Fixed by the 209-keV (B5), 738-keV (B6-B4) four parallel cascades (105-103, 41-103, 96-112, (32)-112);
New isomer: 11/2⁻ (order (23)-87 or 87-(23)).

Results: isomeric states of ¹¹⁹Cs

The extracted lifetime of the $11/2^{-1}$ state is $T_{1/2} = 55(5) \mu s$.

K. K. Zheng, C. M. Petrache, et al. Phys. Lett. B 822 (2021) 136645

K.K.Zheng, CWAN'23, Huizhou

13

Results of PNC-CSM calculations of ¹¹⁹**Cs**

PNC-CSM: particle number conserving cranked shell model

This model was recently used to successfully describe the band structure in rare-earth nuclei.

The calculations have been performed assuming axially symmetric shape.
The parameters κ and μ taken from Ref. [D. R. Inglis, Phys. Rev. 103, 1786 (1956)].
Effective monopole pairing strengths of 0.8 MeV for protons and 0.6 MeV for neutrons.
The deformation parameters ε₂ = 0.32 for most prolate bands, Band 2 (α=-1/2) (ε₂ = 0.30) and Band 3 (ε₂ = -0.17).

Z. H. Zhang, Phys. Rev. C 101, 055506 (2020)

Results: examples of PNC-CSM calculations of ¹¹⁹Cs

Assign the $\pi[541]3/2^-\otimes v[411]3/2^+[415]5/2^+$, $\pi[420]1/2^+$ and $\pi[422]3/2^+$ configurations to Bands 2, 4 and 5, respectively. Identify the nature of upbending (backbending).

Configurations of ¹¹⁹**Cs**

Band	Configuration	1 st crossing (ħω)	2 nd crossing (ħω)	π	ε2
1	Mixed <i>π</i> [541]3/2 ⁻ [550]1/2 ⁻	$v^{2}h_{11/2}(0.45)$	$v^2(g_{7/2}d_{5/2})$ (0.70)	-	0.32
2	Mixed π [541]3/2 ⁻ [550]1/2 ⁻ (α =1/2)	$v^2(g_{7/2}d_{5/2})$ (0.36)		-	0.32
2	Mixed π [541]3/2 ⁻ [550]1/2 ⁻ (α =-1/2)	$v^2(g_{7/2}d_{5/2})$ (0.30)	$v^2(g_{7/2}d_{5/2})$ (0.70)	-	0.30
3	$\pi[505]11/2^{-1}$	$v^{2}h_{11/2}(0.38)$		-	-0.17
4	$\pi[420]1/2^+(\alpha=1/2)$	$\pi^{2}h_{11/2}(0.26)$	$v^{2}h_{11/2}(0.40)$	+	0.32
4'	$\pi[420]1/2^+(\alpha=1/2)$ $\otimes \pi^2(h_{11/2}) \otimes \nu^2(h_{11/2})$			+	0.32
5	$\pi[422]3/2^+(\alpha=1/2)$	$\pi^{2}h_{11/2}(0.26)$	$v^2 h_{11/2}(0.50)$	+	0.32
5'	$\pi[422]3/2^+(\alpha=1/2)\otimes v^2(h_{11/2})$			+	0.32
6	π [541]3/2 ⁻ (α =1/2) \otimes v ² (h _{11/2} g _{7/2})			+	0.32
7	$\pi[420]1/2^+(\alpha=1/2)$ $\otimes \pi^2(h_{11/2}) \otimes \nu^2(g_{7/2}d_{5/2})$			+	0.32
8	$\pi[404]9/2^+$	$\pi^{2}h_{11/2}(0.36)$		+	0.32
9	$\pi[404]9/2^+$	$\pi^2 h_{11/2}(0.30)$		+	0.32
10	$\pi[541]3/2$ - $\otimes v^2(h_{11/2}g_{7/2})$			+	0.32

Proton based revolving chiral bands in ¹¹⁹Cs

K.K.Zheng, CWAN'23, Huizhou

Chiral character?

Proton based revolving chiral bands in ¹¹⁹Cs

Bands 8, 9 are built on the three-proton configuration in the backbending region, one in the high- Ω [404]9/2 orbital and two in low- Ω h_{11/2} orbitals.

As for the contribution from the [404]9/2 orbital, it keeps nearly constant with rotational frequency, which means that this orbital keeps aligned along the long axis.

The gain of angular momentum is $8\hbar$, indicating the alignment of a pair of $h_{11/2}$ particles, and the negligible contribution of the strongly-coupled [404]9/2 proton orbital.

Proton based revolving chiral bands in ¹¹⁹Cs

Gamma band with Chiral character

We observed for the first time such chiral doublet band:

the configuration is formed by only protons;

the total angular momentum is revolving in 3D;

the triaxiality is not maximum (10°-15 °);

one proton keeps aligned along the long axis, while the other two are changing their orientation.

K. K. Zheng, C. M. Petrache, et al. EPJ A 59 (2022) 50

Results: Rich band structure in ¹¹⁸Cs

• We reported ten new bands, low-lying states, several isomeric states, which leads to the largest set of proton-neutron excitations of odd-odd Cs nuclei close to the proton drip line.

K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 044325

Results: isomeric states of ¹¹⁸Cs

Results: isomeric states of ¹¹⁸Cs

Two long-lived isomers have been identified: **a 66-keV transition detected** at the MARA focal plane depopulates one of them, indicating **a half-life in the microsecond range**, while **no depopulating transitions** have been identified for the other, indicating a **much longer half-life**.

Results of PNC-CSM calculations of ¹¹⁸Cs

Bands 1,2 : $\pi[541]3/2 \otimes v[532]5/2$ Band 3: $\pi[404]9/2 \otimes v[532]5/2$ Band 4: $\pi[404]9/2 \otimes v[411]3/2$, v[413]5/2Band 6: $\pi[541]3/2 \otimes v[411]3/2$ Bands 7, 10: $\pi[422]3/2 \otimes v[532]5/2$ Bands 8, 9: $\pi[420]1/2 \otimes v[532]5/2$

Results: Neutron excitations in ¹¹⁹Ba

K.K.Zheng, CWAN'23, Huizhou

K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 014326

Results: isomeric states of 119Ba

Results of PNC-CSM calculations of ¹¹⁹Ba

Published in Phys. Rev. C 104, 014326, 2021

Summary

The neutron-deficient deformed ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs nuclei have been studied with the JUROGAM 3 + MARA setup.

- two most complete level schemes from low to high spin in the odd-even and odd-odd proton-rich nuclei, ¹¹⁹Cs and ¹¹⁸Cs, were observed.

- one new rotational band and several low-lying states were newly identified in ¹¹⁹Ba.

The identifications of the low-lying isomers.

- $T_{1/2} = 0.36(2) \ \mu s$ and $T_{1/2} = 55(5) \ \mu s$, for the 5/2⁻ and 11/2⁻ band heads of the bands based on neutron and proton $h_{11/2}$ orbitals in ¹¹⁹Ba and ¹¹⁹Cs, respectively.

- $T_{1/2} = 0.55(6)$ µs has been measured for the 7⁺ state below the 8⁺ band-head of the $\pi h_{11/2} \otimes \nu h_{11/2}$ band in ¹¹⁸Cs.

The configurations of the observed bands were assigned based on **PNC-CSM** calculations.

- based on the analysis of the alignment properties of the bands, on systematics.

Summary

The chiral bands built on a configuration with only protons in the transient backbending regime was also observed for the first time in ¹¹⁹Cs.

- two $h_{11/2}$ protons revolving from the short to the intermediate axis of the triaxial core, and a strongly coupled $g_{9/2}$ proton sticked along the long axis. The direction of the total angular momentum moves in 3D, giving rise to chiral bands that can be called R χ D (Revolving Chiral Doublet) bands.

Summary

The chiral bands built on a configuration with only protons in the transient backbending regime was also observed for the first time in ¹¹⁹Cs.

- two $h_{11/2}$ protons revolving from the short to the intermediate axis of the triaxial core, and a strongly coupled $g_{9/2}$ proton sticked along the long axis. The direction of the total angular momentum moves in 3D, giving rise to chiral bands that can be called R χ D (Revolving Chiral Doublet) bands.

Thanks for your attention!

moderate

FIG. 2. (Color online) Comparison between the experimental spin versus rotational frequency and the TAC-CDFT calculations for bands 8 and 9 of 119 Cs.

Figure 5.30: Moments of inertia $J^{(1)}$ and projection of the angular momenta on the cranking axis J_x for Band 9 of ¹¹⁹Cs for different deformations. The states with signature $\alpha = +1/2$ and $\alpha = -1/2$ are drawn with filled and open symbols, respectively.

spin versus rotational inequency and the IMC-ODF I calculations for bands 8 and 9 of 119 Cs.

K. K. Zheng, C. M. Petrache, et al. EPJ A 59 (2022) 50
K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 044325
K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 044305
K. K. Zheng, C. M. Petrache, et al. Phys. Lett. B 822 (2021) 136645
K. K. Zheng, C. M. Petrache, et al. Phys. Rev. C104 (2021) 014326

Chirality and Wobbling in Atomic Nuclei, July 10 - July 14, 2023, Huizhou, China

Results: isomeric states of ¹¹⁹Cs

K.K.Zheng, CWAN'23, Huizhou

The time spectrum of the background 511keV γ ray has a slight slope. Thus, we fit isomer spectra with two exponentials, one with a fixed lifetime of $\tau = 240 \ \mu s$ deduced from the fit of the background.

$$y = N_0 e^{\frac{-t}{240\mu s}} + N_1 e^{\frac{-t}{\tau}}$$

17

Results: Neutron excitations in ¹¹⁹Ba

 $(19/2^+)$

 $(15/2^{+})$

 $(11/2^{+})$

3

 $(17/2^{+})$

573

468 250

309 613

303

270 520

218

¹¹⁹Ba

 $(53/2^{-})$

(49/2-)

 $(45/2^{-})$

(41/2-)

(37/2-)

33/2-)

 $(29/2^{-1})$

25/2-

 $21/2^{-}$

332

286

286

238

617

(17/2)

412

13/2

99

110

199

246,85

/302 147(7/2-

 $(19/2^+)$

1189

1098

534

501

Band 1

 $(59/2^{-})$

 $(55/2^{-})$

 $(51/2^{-})$

 $(47/2^{-})$

 $(43/2^{-})$

 $(39/2^{-})$

 $(35/2^{-})$

(31/2-)

 $(27/2^{-})$

 $(23/2^{-1})$

(19/2)

1266

1177

1091

1001

91

852

78

Identified a isomeric state $5/2^{-}$ (B1).

K.K.Zheng, Orsay

885

670,672

Results: Neutron excitations in ¹¹⁹Ba

K.K.Zheng, Orsay

Experimental Setup: MARA

Configuration: QQQD_ED_M.

QQQ is used to create a pointto-point focusing condition over the separator in both directions and to bend horizontally diverging charged particles to parallel trajectories before entering the electric field.

 $\mathbf{D}_{\mathbf{E}}$ separates primary beam and recoils residues

 D_M provides a fixed energy focus for the separated ions with different m/q ratio.
Experimental Setup: Focal plane

The Time of Flight (ToF) between the MWPC and DSSD was recorded. The ToF and the recoil energy deposited in the **DSSD** were used to **distinguish between fusion recoils and scattered beam**.

Five clover detectors surrounding the focal-plane detection system were used to detect γ -rays emitted by **long-lived isomers of the implanted recoils and the daughter nuclei produced by \beta-decay.**

Results: The assignment of the bands to nuclei

The assignments of the bands to ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs are based on:

1. The mass 119 and 118 detected at the MARA focal plane in coincidence with transitions detected in JUROGAM 3;

K.K.Zheng, CWAN'23, Huizhou

Results: The assignment of the bands to nuclei

The assignments of the bands to ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs are based on:

1. The mass 119 and 118 detected at the MARA focal plane in coincidence with transitions detected in JUROGAM 3;

2. The 31 and 32 keV K_{α} X rays of cesium and barium nuclides detected in prompt coincidence with in-band transitions.

Combining information on the mass spectra and on the X-rays, we could assign new bands.

K.K.Zheng, CWAN'23, Huizhou

Test ex

Experimental Setup: HPGe 2 LaBr₃ 4 Liquid scintillation detector 2 Laminated plastic scintillator 9

Conclusion

Digital Acquisition System

Motivation

Shape coexistence

In 1956, the first experimental evidence of **spherical-prolate** shape coexistence was observed in the ¹⁶O isotope. Many regions of shape coexistence are known.

Two minima in the potential energy of ¹¹⁸Xe, ¹¹⁹Cs, and ¹²⁰Ba, for positive and negative quadrupole deformation corresponding to prolate and oblate shapes, respectively.

H. Morinaga Phys. Rev. 101, 254. Kris Heyde. Rev. Mod. Phys. 83, 1467. http://www-phynu.cea.fr/science en ligne/carte potentiels microscopiques/carte potentiel nucleaire eng.htm.

118

0.0

20

10

5

-0.5

E (MeV)

Experimental Setup

Location: JYFL;

Beam: ⁶⁴Zn, 255 MeV, 2-3 pnA;

Target: ⁵⁸Ni (self-supporting enriched), 0.75 mg/cm²;

Populated nuclei: ¹¹⁹Cs (150 mb), ¹¹⁹Ba (20 mb) and ¹¹⁸Cs (40 mb).

Experimental Setup: JUROGAM 3

Detector: 15 tapered + 24 clover +39 BGO shields;
Efficiency: 5.2% at 1.3 MeV;
Extraction: R_{ac}, R_{DCO}, linear polarization.

Experimental Setup: MARA

Configuration: $QQQD_ED_M$.

QQQ is used to create a pointto-point focusing condition over the separator in both directions and to bend horizontally diverging charged particles to parallel trajectories before entering the electric field.

 $\mathbf{D}_{\mathbf{E}}$ separates primary beam and recoils residues

 D_M provides a fixed energy focus for the separated ions with different m/q ratio.

Experimental Setup: Focal plane

The Time of Flight (ToF) between the MWPC and DSSD was recorded. The ToF and the recoil energy deposited in the **DSSD** were used to **distinguish between fusion recoils and scattered beam**.

Five clover detectors surrounding the focal-plane detection system were used to detect γ -rays emitted by long-lived isomers of the implanted recoils and the daughter nuclei produced by β -decay.

Setting of the low-energy thresholds, **energy calibrations**, gain matching, and **efficiency calibrations**

The low-energy **thresholds** of most detectors were set to ≈ 25 keV.

Results: The assignment of the bands to nuclei

The assignments of the bands to ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs are based on:

1. The mass 119 and 118 detected at the MARA focal plane in coincidence with transitions detected in JUROGAM 3;

K.K.Zheng, Huizhou

Results: The assignment of the bands to nuclei

The assignments of the bands to ¹¹⁹Cs, ¹¹⁹Ba, and ¹¹⁸Cs are based on:

1. The mass 119 and 118 detected at the MARA focal plane in coincidence with transitions detected in JUROGAM 3;

2. The 31 and 32 keV K_{α} X rays of cesium and barium nuclides detected in prompt coincidence with in-band transitions.

Combining information on the mass spectra and on the X-rays, we could assign new bands.

Results: isomeric states of ¹¹⁹Cs

K.K.Zheng, Orsay

Doppler shift correction, add-back

a: $E_{\gamma}(0)$ is the energy of γ -ray emitted by the recoils at rest.

b: θ is the detector angle which is defined with respect to the recoil velocity direction. **c**: $\beta = v/c$.

In our experiment, we used a value $\beta = 0.044$ for all γ rays detected in the JUROGAM 3 which resulted in the **best resolution** for high energy γ rays.

The clover detector can be operated in two modes: single crystal and **add-back mode**.

The asymmetry A is defined as

$$A = \frac{aN_{\perp} - N_{\parallel}}{aN_{\perp} + N_{\parallel}}$$

where a is a correction coefficient

$$a(E_{\gamma}) = 1.113(7) - 5.4(8) \times 10^{-5} E_{\gamma}$$

A positive asymmetry A implies electric nature, while a negative asymmetry implies magnetic nature.

K. Starosta, Nucl. Instrum. Meth. Phys. Res. A423, 16 (1999) A. Herzáň, Phys. Rev. C 92, 044310 (2015)

Introduction

Experimental details

Results and discussion

- ¹¹⁹Cs
- ¹¹⁹Ba
- ¹¹⁸Cs

Oblate-prolate shape coexistence in ¹¹⁹Cs

K.K.Zheng, Orsay

Oblate-prolate shape coexistence in ¹¹⁹Cs

K.K.Zheng, Orsay

Oblate-prolate shape coexistence in ¹¹⁹Cs

We observed for the first time the oblate-prolate shape coexistence in the 120 mass region.

K.K.Zheng, Orsay

0.8

Proton based revolving chiral bands in ¹¹⁹Cs

We observed for the first time such chiral doublet band:

the configuration is formed by only protons; the total angular momentum is revolving in 3D; the triaxiality is not maximum $(10^{\circ}-15^{\circ})$; one proton keeps aligned along the long axis, while the other two are changing their orientation.

Acknowledgments

Thanks for your attention

Cross section

Mass	114	115	116	117	118	119	120	121
₅₂ Te	2 mb							
₅₃ I		20 mb						
54Xe		2 mb	20 mb	6 mb	90 mb			
55Cs				6 mb	35 mb	140 m b		
56Ba					1 mb	20 mb	100 mb	
57La							4 mb	7 mb

Changed states: 27, 28, 29, 30

m/q overlap: 120/116 119/115 118/114

isomer of ¹¹⁹Cs

Background 511-keV

Doppler shift correction

$QQQ D_E D_M$

 $\vec{F} = q \vec{v} \times \vec{B}$

Centrifugal= Lorentz force $m\frac{v^2}{\rho} = qvB$ $\frac{p}{q} = B\rho$

$$q^+ \vec{v} \Delta \mathbf{x} \downarrow \vec{E}$$

$$m\ddot{y} = qE$$
$$\Delta y = \frac{qE}{m} \left(\frac{\Delta x}{v}\right)^{2}$$
$$\Delta y \propto \frac{1}{mv^{2}} \propto \frac{1}{E_{c}}$$

K.K.Zheng, Orsay

κ and μ

The term V' of the Nilsson potential is of the form

$$V' = -\kappa(N)\hbar\omega_0\{2l_{\mathfrak{t}}\cdot s + \mu(N)(l_{\mathfrak{t}}^2 - \langle l_{\mathfrak{t}}^2 \rangle_N)\}$$

T. Bengtsson, I. Ragnarsson / Rotational bands

TABLE 1

The modified oscillator parameters, κ and μ , which have been used in this work

N	Prot	ons	Neutrons		
I rot -	ĸ	μ	ĸ	μ	
0	0.120	0.00	0.120	0.00	
1	0.120	0.00	0.120	0.00	
2	0.105	0.00	0.105	0.00	
3	0.090	0.30	0.090	0.25	
4	0.065	0.57	0.070	0.39	
5	0.060	0.65	0.062	0.43	
6	0.054	0.69	0.062	0.34	
7	0.054	0.69	0.062	0.26	
8	0.054	0.69	0.062	0.26	

Nilsson_Diagram (Proton)

K.K.Zheng, Orsay

MARA

Quadrupole triplet	\mathbf{Q}_1	$\mathbf{Q}_{2,3}$	
Optical length	$25~{ m cm}$	35 cm	
Bore diameter	$10 \mathrm{cm}$	15 cm	
Maximum field gradient	$10 \mathrm{T/m}$	$10 \mathrm{T/m}$	
Nominal field relative to B_{α}	$0.4608 \text{ T}/B_{\odot}$	0.5859,	
rommar held relative to <i>Dp</i>	0.4050 1/ <i>D</i> p	$0.2387 \text{ T}/B\rho$	
Sector fields	Electrostatic	Magnetic	
Radius of curvature, ρ	4.000 m	1.000 m	
Bending angle, ϕ	20°	40°	
Vertical gap	$14 \mathrm{~cm}$	20 cm (active)	
Horizontal gap	10 cm (active)	10 cm	
Maximum rigidity	14.2 MV	1 Tm	
Inclination of EFB (entrance		00	
and exit)		0	
EFB curvature radii (entrance		2.0 m	
and exit)		2.0 m	
Height of the gap in the anode	1.5 cm (extending		
freight of the gap in the anode	from $\approx 10^{\circ}$ to $\approx 19^{\circ}$)		
Drift lengths	Length [cm]		
Target $-\bar{Q_1}$	35		
$Q_1 - Q_2$	14		
$Q_2 - Q_3$	16		
Q_3 – Deflector EFB	30		
Deflector EFB – Dipole EFB	80		
Dipole EFB – Focal plane	205.8		

Slits

PDCO

90°

 270°

60°

300°

120[°]

240

For an axially oriented nucleus, the transitions have a linear polarization defined by

$$p(\theta) = \frac{w(\theta, \epsilon = 0^{\circ}) - w(\theta, \epsilon = 90^{\circ})}{w(\theta, \epsilon = 0^{\circ}) + w(\theta, \epsilon = 90^{\circ})}$$

$$W(\theta,\epsilon) = \frac{d\Omega}{8\pi} \sum_{\lambda=even} B_{\lambda} U_{\lambda} [A_{\lambda} P_{\lambda}(\cos\theta) + 2A_{2\lambda} P_{2\lambda}^{(2)}(\cos\theta)\cos 2\epsilon]$$

 $p(\theta)$ for $E_1 E_2$ or M_1

K.K.Zheng, Orsay

Cranked Nilsson levels

Shape coexistence

K.K.Zheng, Orsay

Shape coexistence

HFB-D1S Bruyères-le-Châtel

Proton based revolving chiral bands in ¹¹⁹Cs

K value : K=4.5(B8,B9); K=0.5 (B10).

The Harris parameters: $J_0 = 17 \ \hbar^2 MeV^{-1}$ $J_1 = 25 \ \hbar^4 MeV^{-3}$.

The gain of angular momentum is $\approx 8\hbar$, alignment of a pair of h^{11/2} particle, negligible contribution of the stronglycoupled [404]9/2⁺ proton orbital.

Bands 8, 9 are nearly degenerate, have similar moments of inertia and B(M1)/B(E2) ratios of reduced transition probabilities.

K.K.Zheng, Orsay

Results: alignment analysis of ¹¹⁹Ba

The **K values:** 2.5, 2.5, and 1.5 for Bands 1, 2, and 3.

Band 1: a large signature splitting Bands2, 3: zero signature splitting.

Bands 1, 2: alignment occurs at rotational frequency of $\hbar \omega \approx 0.35$ MeV **Band 3**: more sharp, lower deformation

As Bands 2 and 3 are assigned to the $vd_{5/2}[413]5/2^+$ and $vg_{7/2}[411]3/2^+$ configurations, respectively, one would expect a higher alignment in Band 3, which is in contrast with the experimental alignment which is smaller than in Band 2. However, as the two configurations assigned to Bands 2 and 3 are **strongly mixed**, the K-values are difficult to define. An intermediate K = 2 value would lead to very similar alignments of the two bands.

K.K.Zheng, Orsay

Results: alignment analysis of ¹¹⁹Ba

 $\alpha = -1/2$ signature partners are sharper than that of the $\alpha = +1/2$. This sharpness increases with the neutron number; Only in the negative-parity signature of Band 1 in ¹²³Ba a second alignment at $\hbar \omega \approx 0.6$ MeV has been observed. Similar alignment frequencies for all bands excepting Bands 3 of ¹¹⁹Ba and ¹²¹Ba (sharper).

¹¹⁹Ba, $\alpha = -1/2$ signature partners of Band 3 was observed after the second alignment up to high spin.

¹¹⁷Ba, the alignment of the negative-

signature partner (

gradual, and no second alignment³⁵ was

Results: alignment analysis of ¹¹⁸Cs

Bands 1, 2: the alignment exhibited in Band 1 is around 7ħ, in agreement with the π [541]3/2 – $\bigotimes v$ [532]5/2 – configuration previously assigned. the alignments exhibited by the two signature partners are very similar. **Bands 3, 4**: The alignment of Band 3 is around 2.5ħ at low frequency, exhibits an alignment gain of \approx 8ħ at $\hbar\omega \approx 0.35$ MeV, and saturates at ix \approx 10ħ at high frequency.

Bands 6, 7: exhibiting smooth up-bends with steeper slopes than in the other bands. They are composed of degenerate signature partners, and are not connected by any transition.

Bands 8, 9, 10: interconnected by several transitions. the alignment exhibited by Bands 8 and 9 are similar, but more gradual than those of Bands 3 and 4. An alignment gain of $\approx 7\hbar$ at $\hbar\omega\approx 0.35$ MeV is exhibited, which saturates at high frequency at i x $\approx 10\hbar$, like in Band 3.

K.K.Zheng, Orsay