

Chirality and Wobbling in Atomic Nuclei

July 10-14, 2023, Huizhou, China

Relativistic configuration-interaction density functional theory: chiral rotation in ¹³⁰Cs

Yakun Wang (王亚坤)

Collaborators: Jie Meng, Pengwei Zhao

Outline

\Box Introduction

- \blacksquare Theoretical framework
- **D** Numerical details
- \Box Results and discussion
- **D** Summary

Nuclear chirality

■ Chirality in atomic nuclei was first suggested by Frauendorf and Meng in 1997 **Frauendorf and Meng, NPA 617, 131 (1997)**

Experimental progress

■ More than 60 chiral doublet bands have been reported in mass regions 80, 100, 130, and 190.

Xiong and Wang, ADNDT 125, 193-225 (2019)

Theoretical progress

□ Particle rotor model

Frauendorf and Meng, NPA 617, 131 (1997), Koike et al., PRL 93, 172502 (2004) Peng et al., PRC 68, 044324 (2003), Zhang et al., PRC 044307 (2007) Qi et al., PLB 675, 175 (2009), Chen et al., PLB 782, 744 (2018)

□ Generalized coherent state model

Raduta et al., JPG 43, 095107 (2016)

□ Interacting boson fermion-fermion model

Tonev et al., PRL 96, 052501 (2006), Tonev et al., PRC 76, 044313 (2007) Brant et al., PRC 78, 034301 (2008)

Phenomenological approaches, parameters fitted to the data

Theoretical progress

□ Tilted axis cranking (TAC) model

Frauendorf and Meng, NPA 617, 131 (1997), Dimitrov et al., PRL 84, 5732 (2000)

 \blacksquare TAC + random phase approximation

Mukhopadhyay et al., PRL 99, 172501 (2007), Almehed et al., PRC 83, 054308 (2011)

 \blacksquare TAC + collective Hamiltonian method

Chen et al., PRC 87, 024314 (2013), Chen et al., PRC 94, 044301 (2016)

□ Projected shell model

Chen et al., PLB 785, 211 (2018), YKW et al., PRC 99, 054303 (2019)

Single-j or pairing plus quadrupole-quadrupole model

Nuclear chirality in density functional theory

 \Box Nonrelativistic density functional theory (DFT) + TAC

Olbratowski et al., PRL 93, 052501 (2004), Olbratowski et al., PRC 73, 054308 (2006)

□ Relativistic DFT+ TAC

Zhao, PLB 773, 1 (2017), Zhao et al., PRC 99, 054319 (2019), Wang and Meng, PLB 841, 137923 (2023)

 \Box Time-dependent relativistic DFT

Ren et al., PRC 105, L011301 (2022)

Angular momentum and transition probabilities are treated in a semiclassical way

Chirality in a fully microscopic and quantal way based on DFT is highly desirable

The present work

- Relativistic Configuration-interaction Density functional (ReCD) theory is adopted to study the nuclear chirality:
	- \checkmark ReCD combines the advantages of configuration-interaction shell model and relativistic DFT \Rightarrow Simultaneous description of chiral doublet bands based on microscopic two-body interactions
	- \checkmark The broken rotational symmetry is restored by three dimensional angular momentum projection technique \Rightarrow quantal description of spectra and transition probabilities

Relativistic DFT

□ Relativistic Lagrangian density and Hamiltonian:

$$
(\bar{\psi}\mathcal{O}\Gamma\psi), \quad \mathcal{O} \in \{1, \tau\}
$$
\n $\Gamma \in \{1, \gamma_{\mu}, \gamma_{5}, \gamma_{\mu}\gamma_{5}, \sigma_{\mu\nu}\}$ \n \longrightarrow \n $\mathcal{L} = \mathcal{L}^{\text{free}} + \mathcal{L}^{\text{4f}} + \mathcal{L}^{\text{der}} + \mathcal{L}^{\text{hot}} + \mathcal{L}^{\text{em}}$ \n $\hat{H} = \int d\mathbf{r} \mathcal{H}(\mathbf{r})$

 \Box Relativistic density functional:

$$
E \equiv \langle \Phi | \hat{H} | \Phi \rangle = \int d\mathbf{r} \left\{ \sum_{i=1}^{A} \psi_i^{\dagger} (\alpha \cdot \mathbf{p} + \beta m) \psi_i + \frac{1}{2} \alpha_S \rho_s^2 + \frac{1}{3} \beta_S \rho_s^3 + \frac{1}{4} \gamma_S \rho_s^4 + \frac{1}{2} \delta_S \rho_s \Delta \rho_s \right.
$$

$$
+ \frac{1}{2} \alpha_V j_\mu j^\mu + \frac{1}{4} \gamma_V (j_\mu j^\mu)^2 + \frac{1}{2} \delta_V j_\mu \Delta j^\mu + \frac{1}{2} \alpha_{TV} j_\mu j^\mu + \frac{1}{2} \delta_{TV} j_\mu \Delta j^\mu + \frac{1}{2} e^2 A_\mu j^\mu_p \right\}
$$

□ Relativistic Hartree-Bogoliubov (RHB) equation:

$$
\begin{pmatrix} h_D - \lambda & \Delta \\ -\Delta^* & -h_D^* + \lambda \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix} \qquad \begin{array}{c} h_D = \alpha \cdot p + \beta (m + S) + V \\ \Delta_{\mu\nu} = \frac{1}{2} \sum_{\delta \gamma} \langle \mu \nu | V^{pp} | \delta \gamma \rangle_a \kappa_{\delta \gamma} \end{array}
$$

 \Box Intrinsic ground-state for odd-odd nucleus: $|\Phi_{\pi_0\nu_0}\rangle = \hat{\beta}^{\dagger}_{\pi_0}\hat{\beta}^{\dagger}_{\nu_0}|\Phi_0\rangle$

ReCD theory

■ Wavefunction in ReCD theory:

 $|\Psi_{\alpha}^{I}\rangle =\ \sum\ \sum f_{K\kappa}^{I\alpha} \hat{P}_{MK}^{I} |\Phi_{\kappa}\rangle$ $K = -L \kappa$

□ Configuration space:

 $|\Phi_{\kappa}\rangle \in \{|\Phi_{\pi_0\nu_0}\rangle, \hat{\beta}^{\dagger}_{\pi_i}\hat{\beta}^{\dagger}_{\nu_i}|\Phi_0\rangle, \hat{\beta}^{\dagger}_{\pi_i}\hat{\beta}^{\dagger}_{\nu_i}\hat{\beta}^{\dagger}_{\nu_k}\hat{\beta}^{\dagger}_{\nu_l}|\Phi_0\rangle,$ $\hat{\beta}_{\pi_i}^{\dagger} \hat{\beta}_{\nu_j}^{\dagger} \hat{\beta}_{\pi_k}^{\dagger} \hat{\beta}_{\pi_l}^{\dagger} |\Phi_0\rangle \}.$

\Box Hill-Wheeler equation:

$$
\sum_{K'\kappa'} \{ \mathcal{H}^I_{KK';\kappa\kappa'} - E^I_\alpha \mathcal{N}^{I\alpha}_{KK';\kappa\kappa'} \} f^{I\alpha}_{K'\kappa'} = 0
$$

 \Box Transition probabilities:

$$
\frac{1}{2I_i+1}|\langle \Psi^{I_f}||\hat{O}_{\lambda}||\Psi^{I_i}\rangle|^2
$$

ReCD theory

Numerical details

D Nucleus: ¹³⁰Cs

■ Major shells: 10

Density functional: PC-PK1 ■ Pairing interaction: Separable pairing force Zhao, Li, Yao, and Meng, PRC 82, 054319 (2010) Tian, Ma, and Ring, PLB 676, 44 (2009) \Box Integral grids of Euler angles: $(\psi, \theta, \phi) = (20, 20, 20)$

 \Box Quasiparticle excitation energy cutoff: $E_{cut} = 5.0$ MeV

Potential energy surface

 \Box The deformation parameters β and γ are predicted to be 0.195 and 20.58[∘]

Energy spectra

The energy spectra for both the yrast and side bands in ¹³⁰Cs are reproduced satisfactorily by the ReCD calculations

Peking University **Chiral rotation in 130Cs** 13

Transition probabilities

Spin (\hbar)

- \Box The B(E2) and B(M1) values are reproduced satisfactorily
- No effective charges are used in the calculation
- \Box Transition probabilities for yrast and side bands are predicted to be similar
- \blacksquare The calculated staggering behaviors for M1 transitions for states with spin larger than 14ℏ are much weaker than data

Composition of wavefunctions

Chiral geometry: K-plot

A-plot: the probability distribution of angular momentum components on three axes of the intrinsic frame

The evolution from chiral vibration to static chirality is clearly shown

Chiral geometry: A-plot

Azimuthal plot (A-plot): the probability distribution for the orientation of the angular momentum on the (θ, ϕ) plane

 \Box The chiral geometry revealed by A-plot is consistent with that obtained from K-plot

Peking University Chiral rotation in 130Cs 17

Summary

 \blacksquare ReCD theory is adopted to study the nuclear chirality in 130Cs:

- \checkmark The spectroscopic properties of chiral doublets are reproduced satisfactorily
- \checkmark The chiral geometries from chiral vibration to static chirality are illustrated through the A-plot and K-plot
- \checkmark The present work provides the first microscopic and quantal description for the chirality in atomic nuclei