Development and cooperation on γ-spectroscopy instruments

LI Guang-shun for the gamma instrumentation collaboration

2023-07-13

Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS)

Contents

The basic information of nuclear excited states

The basic information of nuclear excited states

B

The basic information of nuclear excited states >Large is still unknown, especially the exotic nuclei near drip line

The basic information of nuclear excited states

>Large is still unknown, especially the exotic nuclei near drip line

Requirements:

The basic information of nuclear excited states

>Large is still unknown, especially the exotic nuclei near drip line

Requirements:

Examples of the γ detector arrays in the world

Bartially covered ONLY ...

Series We would also like to contribute to the fundamental studies ...

Main facilities depend on ...

Facility @ IMP

HPGe array @ IMP

16 coaxial HPGes (70%) 8 Clover HPGes (160%) Dedicated supporting frame

BGO Anti-Compton shields @ IMP

Low energy beam line @ IMP

Commissioning run @ IMP

Lifetime measurement of nuclear excited state via DSAM method

15 HPGe + 6Clover

Experimental data of ⁴⁶Ti

Participants from domestic collaborations @2021

- **PKU Peking University**
- **SDU** Shandong University
- **CIAE** China Institute of Atomic Energy

More than 600 hours beam time

First collaborative run within Chinese collaboration

Experimental data of 2021

Typical gated spectra from the HPGe array Data is still in analysis ...

Main facilities depend on ...

Facility @ CIAE

Picture of gate

HI-13 tandem accelerator HPGe array

Anti-Compton shield (AC)

Courtesy: Dr. Zheng Yun (CIAE)

Photos during experiment @ CIAE

Collaborations among universities and institutes Courtesy: Dr. Zheng Yun (CIAE)

Cooperation of new era

> Available γ-ray detectors:

IMP (Lanzhou): HPGe > 16; Clover > 8; LaBr₃ > 4

CIAE (Beijing): HPGe > 10; LaBr₃ > 5

Shandong U. (Weihai): HPGe + LaBr₃ > 10

Beihang U. (Beijing): Clover + LaBr₃ > 6

New cooperative agreement (2019)

<u>To form a gamma pool in China...</u>

China conjoint gamma array

Courtesy: Dr. Zheng Yun (CIAE)

16 coaxial HPGes (70%)-IMP8 C7 coaxial HPGes (35%)-CIAE2 c

1 Clover HPGe (120%)-BUAA

8 Clover HPGes (160%)-IMP2 coaxial HPGes (70%)-CIAE

2 coaxial HPGes (30%)-SDU

Experimental campaign at 2021 - 2022

Facility @ IMP

16 Coaxial HPGe 5 Clover HPGe 10 LaBr3 Si telescope Csl ball

IMP - Institute of Modern Physics, CAS
 CIAE - China Institute of Atomic Energy
 PKU - Peking University
 SYU - Sun Yat-sen University
 SZU – Shenzhen University

Soto

More than 500 hours beam time

Si dets: Dr. Shengquan Yan (CIAE)

CsI dets: Dr. Yongde Fang (IMP)

Gamma spectra w and w/o particle coincidence

LaBr₃ detector development @ IMP

LaBr₃ detector development @ IMP

YSO array development @ IMP

Simulation tools development @ IMP

Geant4 simulation frameworks are available, not only for single detector, but for the full array...

High speed/stable DAQ system @ IMP

		Sim		目和学B e of Modern Pr	完近代物 iysics, Chinese Act	里研究 ademy of Scien			×	
				Run	Stauts					
Stop		RunName:	run	StartTime	2021/6/11 18:40:28		Refresh time:	5	<>	
		Run No.:	1167 😴 Run Time: 00:07:28				Auto ReStart	7200	<>	
				Logger In	formation					
Logger Dir:		/home/inbeam2/data/252Cf								
FileName		FileSiz		ze(MB)	FileRate(KB/s)		DiskLevel			
run01167.root			182.73		0.00		4%			
				Equipme	ent Infor					
ID	Eq. Name	client S	Status	Evenets	event rate(/s)	Data(MB)	Data rate(KB/s)			
3	XIA	imp-XIA@127.0.0.1		4547394	10013.80	301220.76	672.91			
4	XIA_SCLR	imp-XIA@1	27.0.0.1	149	0.40	1306.66	3.51			
				Run	Infor					
1202	1/6/11 16:40:1	9) Waiting Tor	stop 1							

VME based & Digitizer based DAQ systems are also available from IMP

Courtesy: Dr. Wang Jianguo (IMP)

Contents

Collaborators from the A3 countries

Conclusion: there is a variety of post-EURICA physical cases

Special thanks to:

BAUU: H. Watanabe, B.H. Sun, et al. RIKEN: S. Nishimura, et al. IBS: T. Ahn, B. Moon, et al. IMP: G.S. Li, Z. Liu, et al. RCNP, CIAE, PKU, SDU ...

Online meeting at October, 2021

Online meeting at July, 2021

Two candidates to be employed at BigRIPS

In the model of CIAE, the radius of the basic ballshell is around 600 mm

In the model of IMP, the radius of the basic ball-shell is around 490 mm

Example of simulations with the IMP frame

distance	Small angle	Middle angle	90 degree
	(HPGes)	(HPGes)	(Clovers)
IMP Closest model	140 mm	93 mm	129 mm

Si: 78 mm x 78 mm

8 Clover HPGes (160%) 4 of the 8 are from Korea Half –view of the array

Example of simulations with the IMP frame

Comparison on the efficiencies

40 detectors considered
Larger distance to the center
Better granularity

16 coaxial HPGes (70%)-IMP8 Clover HPGes (160%)-IMP4 Clover HPGe (Super) -Korea2 coaxial HPGes (70%)-CIAE7 coaxial HPGes (35%)-CIAE3 coaxial HPGes (30%)-SDU

24 detectors considered
 Smaller distance to the center
 Worse granularity

16 coaxial HPGes (70%)-IMP4 Clover HPGes (160%)-IMP4 Clover HPGe (Super) -Korea2 coaxial HPGes (70%)-CIAE2 coaxial HPGes (70%)-CIAE3 coaxial HPGes (70%)-CIAE

Contents

Successful collaboration with JAEA

Special thanks to: JAEA: M. Oshima, Y. Toh, *et al.* GEMINI, Japan Atomic Energy Agency (JAEA) 14 HPGe's with AC shields

IMP: Zhang. Y. H, Zhou. X. H, et al.

Many publications from this collaboration !!

Selected results ...

Selected research results

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAP AND TACTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 38 (2011) 095105 (9pp)

doi:10.1088/(954-3899/38/9/095105

Signature inversion in the 7/2⁻[503] band of ¹⁸⁵Pt PHYSICAL REVIEW C 75, 034314 (2007)

> Band properties of the transitional nucleus ¹⁸⁷Pt PHYSICAL REVIEW C 80, 034303 (2009)

Properties of the rotational bands in the transitional nucleus ¹⁸⁹Pt PHYSICAL REVIEW C 89, 054303 (2014)

In-beam γ spectroscopy of the even-even nucleus ¹⁹⁰Pt

High spin states in the Pt isotopes are further systematically studied

Selected results ...

Selected research results

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAP AND TACTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 38 (2011) 095105 (9pp)

doi:10.1088/0954-3899/38/9/025105

Signature inversion in the 7/2^{-[503]} band of ¹⁸⁵Pt PHYSICAL REVIEW C 75, 034314 (2007)

> Band properties of the transitional nucleus ¹⁸⁷Pt PHYSICAL REVIEW C 80, 034303 (2009)

Properties of the rotational bands in the transitional nucleus ¹⁸⁹Pt PHYSICAL REVIEW C 89, 054303 (2014)

In-beam γ spectroscopy of the even-even nucleus ¹⁹⁰Pt

High spin states in the Pt isotopes are further systematically studied

S. Guo, et al., Phys.Rev. C 86, 014323 (2012)

H. X. Wang, et al., Phys.Rev. C 86, 044305 (2012)

Y. D. Fang, et al., Phys.Rev. C 82, 064303 (2010)

Successful collaboration with JAEA

Nuclear structure study on ^{256,258}No

 $^{10}B+^{254}Es \longrightarrow ^{256,258}No+\alpha xn$

JAEA: Dr. Katsuhisa Nishio, *et al.* IMP: Dr. Fang. Y. D, *et al.*

4 Clover detectors were employed in the project

Successful collaboration with RCNP

Collaboration: USA, Japan, China

16 Clover detectors + Acs, 2 from IMP

Performed experiment (2017):

High-Spin States in ⁹¹Y, ^{93,94}Nb and ⁹⁴Zr, by Dr. Liu. M. L et al.

Approved beam time:

Linear Polarization Measurement in Wobbling Bands, by Dr. Guo. S et al.

On going collaboration with KEK

The KISS project

4 IMP Clover detectors were employed for the project at 2020

They will be employed again for the project at 2023

WNSC: Dr. Yutaka Watanabe, et al.

On going collaboration with GSI

G. S. Li, R. Lozeva, et al., NIM A, 987, 164806 (2021)

NUSTAR/DESPEC project

A tip of the iceberg

The sharing of the instrumentations are only partially covered in this talk!

Outlook

Contribution to the (inter)national interest in the community

Maximize scientific outputs and impact of the community

Foster researchers who will bare the future of Nuclear Physics

Outlook

Strengthen the collaboration, share the instrumentations
 We will have more bright future
 Thank you for your attention!