

空间科学与物理学院 ________ School of Space Science and Physics

Earth: photo credit

Theoretical studies on the chirality and wobbling in SDU

Bin Qi, Shandong University, China

CWAN'23

International Conference on Chirality and Wobbling in Atomic Nuclei Huizhou (China), July 10 - 14, 2023

空间科学与物理学院 School of Space Science and Physics

Outline

<mark>Precession(进动)</mark> the angle of Precession is changing --Nutation(章动) 空间科学与物理学院 School of Space Science and Physics

Even-Even nuclei

Rotational angular momentum for a triaxial nucleus is not aligned along the axis with the largest moment of inertia, but precesses and wobbles

A. Bohr and B. R. Mottelson, Nuclear Structure Vol. II. (1975)

空间科学与物理学院 School of Space Science and Physics

Even-Even nuclei

In a triaxial deformed even-even nucleus

Harmonic approximation (HA)

$$\hat{H}_{\rm rot} = \frac{\hat{I}_1^2}{2\mathcal{J}_1} + \frac{\hat{I}_2^2}{2\mathcal{J}_2} + \frac{\hat{I}_3^2}{2\mathcal{J}_3}$$

Considering the **approximation**

$$[I_{-}, I_{+}] = 2I_3 \approx 2I \quad (I_{\pm} = I_2 \pm iI_1)$$

$$E(I, \mathbf{n}) = \frac{I(I+1)}{2\mathcal{J}_3} + (\mathbf{n} + \frac{1}{2})\hbar\Omega_{\text{wob}}$$
$$\hbar\Omega_{\text{wob}} = 2I\sqrt{\left(\frac{\hbar^2}{2\mathcal{J}_1} - \frac{\hbar^2}{2\mathcal{J}_3}\right)\left(\frac{\hbar^2}{2\mathcal{J}_2} - \frac{\hbar^2}{2\mathcal{J}_3}\right)} \propto I$$

 $I\uparrow, \ \hbar\Omega_{
m wob}\uparrow$

A. Bohr and B. R. Mottelson, Nuclear Structure Vol. II. (1975)

空间科学与物理学院__School of Space Science and Physics

Even-Even nuclei

$$\mathcal{J}_k = \mathcal{J}_0 \sin^2(\gamma - \frac{2}{3}\pi k).$$

Hydrodynamical MoI of the three principal axes as functions of triaxial parameter γ . The unit is taken as J_0 .

$$\hbar\omega = I\left[\left(\frac{1}{\mathcal{J}_2} - \frac{1}{\mathcal{J}_1}\right)\left(\frac{1}{\mathcal{J}_3} - \frac{1}{\mathcal{J}_1}\right)\right]^{1/2}$$

calculated by HA equation (Line) and triaxial rotor model (Dot)

$$E_{\text{wob}} = E(n, I) - \frac{1}{2}[E(0, I-1) + E(0, I+1)]$$

n: phonon number , here n=1

空间科学与物理学院

School of Space Science and Physics

wobbling energies, intraband and interband B(E2) values calculated by HA (Line) and rotor model (Dot)

Even-Even nuclei

Energy level scheme calculated by the rotor model for ground band and n = 1, 2 wobbling bands

BQ*, Zhang, Wang, Q.B.Chen*, JPG 48 (2021) 055102

空间科学与物理学院 _School of Space Science and Physics

Even-Even nuclei

θ

φ

m

To further illustrate the angular momentum geometry with different γ , the probability distribution of angular momentum on the (θ, ϕ) plane, i.e., azimuthal plot, is calculated.

$$\mathcal{P}^{(\nu)}(\theta,\varphi) = \langle I, \theta\varphi \mid II\nu \rangle^2 = \frac{2I+1}{8\pi} \sum_{KK'} D_{KI}^{I*}(\theta,\varphi,0) \rho_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\varphi,0)$$

S. Frauendorf, Report on "International conference on Chiral bands in nuclei, KTH, Stockholm", 2016.04 F. Q. Chen, Q. B. Chen, et al, PRC 96, 051303(R) (2017). Q. B. Chen and J. Meng, PRC 98, 031303(R) (2018).

J. 4 7. 3 (100 300)

Precession and tunnelingare two aspects of the quantum wobbling motion.

Zhang, BQ*, Wang, Jia, Wang, PRC 105, 034339 (2022)

空间科学与物理学院

空间科学与物理学院 School of Space Science and Physics

Outline

空间科学与物理学院 School of Space Science and Physics

Even-Even nuclei

 $Y_{20} + Y_{22} + Y_{30}$

- quadrupole-octupole deformed nucleus
- ➢ P: space reflection,
- > R_1 : rotation through angle π about 1-axis,
- > S_1 : reflection with respect to the 2-3 plane.

multip	lication	table	of	C_{2v}
			-	2 V

	E	S_1	S_2	\mathcal{R}_3
E	E	\mathcal{S}_1	\mathcal{S}_2	\mathcal{R}_3
S_1	S_1	E	\mathcal{R}_3	S_2
S_2	S_2	\mathcal{R}_3	E	S_1
\mathcal{R}_3	\mathcal{R}_3	S_2	S_1	E

Symmetry of nuclear density distribution: C_{2v} point group

空间科学与物理学院 _School of Space Science and Physics

Even-Even nuclei

Experimental data in ¹⁴⁸Ce

空间科学与物理学院 _ School of Space Science and Physics

Even-Even nuclei

	E	\mathcal{R}_1	\mathcal{R}_2	\mathcal{R}_3	\mathcal{S}_1	\mathcal{S}_2	S_3	\mathcal{P}
E	E	\mathcal{R}_1	\mathcal{R}_2	\mathcal{R}_3	S_1	S_2	S_3	\mathcal{P}
\mathcal{R}_1	\mathcal{R}_1	E	\mathcal{R}_3	\mathcal{R}_2	\mathcal{P}	S_3	S_2	S_1
\mathcal{R}_2	\mathcal{R}_2	\mathcal{R}_3	E	\mathcal{R}_1	S_3	\mathcal{P}	S_1	S_2
\mathcal{R}_3	\mathcal{R}_3	\mathcal{R}_2	\mathcal{R}_1	E	S_2	S_1	\mathcal{P}	S_3
\mathcal{S}_1	S_1	\mathcal{P}	S_3	\mathcal{S}_2	E	\mathcal{R}_3	\mathcal{R}_2	\mathcal{R}_1
S_2	S_2	S_3	\mathcal{P}	\mathcal{S}_1	\mathcal{R}_3	E	\mathcal{R}_1	\mathcal{R}_2
\mathcal{S}_3	S_3	S_2	S_1	\mathcal{P}	\mathcal{R}_2	\mathcal{R}_1	E	\mathcal{R}_3
\mathcal{P}	\mathcal{P}	\mathcal{S}_1	S_2	\mathcal{S}_3	\mathcal{R}_1	\mathcal{R}_2	\mathcal{R}_3	E
	E	\mathcal{R}_1	\mathcal{R}_2	\mathcal{R}_3	S_1	S_2	S_3	\mathcal{P}
Ag	<u>E</u> 1	$\frac{\mathcal{R}_1}{1}$	$\frac{\mathcal{R}_2}{1}$	$\frac{\mathcal{R}_3}{1}$	$\frac{S_1}{1}$	$\frac{S_2}{1}$	$\frac{S_3}{1}$	$\frac{\mathcal{P}}{1}$
Ag B _{1g}	<u>Е</u> 1 1	$\frac{\mathcal{R}_1}{1}$	$\frac{\mathcal{R}_2}{1} \\ -1$	$\frac{\mathcal{R}_3}{1}$	$\frac{S_1}{1}$	$\frac{S_2}{1}$	$\frac{S_3}{1}$	P 1 1
Ag B _{1g} B _{2g}	<i>E</i> 1 1 1	$\frac{\mathcal{R}_1}{1}\\-1$	$\frac{\mathcal{R}_2}{1} \\ -1 \\ 1$	$\frac{\mathcal{R}_3}{1} \\ -1 \\ -1$	$\frac{S_1}{1}$ -1	$\frac{S_2}{1} - 1 \\ 1$	$\frac{S_3}{1} \\ -1 \\ -1$	<i>P</i> 1 1 1 1
$\begin{array}{c} A_g\\ B_{1g}\\ B_{2g}\\ B_{3g} \end{array}$	E 1 1 1 1 1	$\begin{array}{c} \mathcal{R}_1 \\ 1 \\ -1 \\ -1 \\ -1 \end{array}$		$ \begin{array}{r} \mathcal{R}_3 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $	$\frac{S_1}{1} \\ -1 \\ -1 \\ -1$			P 1 1 1 1
$\begin{array}{c} A_g\\ B_{1g}\\ B_{2g}\\ B_{3g}\\ A_u \end{array}$	E 1 1 1 1 1	$\begin{array}{c} \mathcal{R}_{1} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{array}$			$\frac{S_1}{1} \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $			P 1 1 1 1 1 -1
$\begin{array}{c} A_g\\ B_{1g}\\ B_{2g}\\ B_{3g}\\ A_u\\ B_{1u} \end{array}$	E 1 1 1 1 1 1	$\begin{array}{c} \mathcal{R}_1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{array}$		$\begin{array}{c} \mathcal{R}_{3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \end{array}$	S_1 1 -1 -1 -1 -1 -1 -1			P 1 1 1 1 -1 -1
$\begin{array}{c} A_g\\ B_{1g}\\ B_{2g}\\ B_{3g}\\ A_u\\ B_{1u}\\ B_{2u} \end{array}$	E 1 1 1 1 1 1 1 1	$\begin{array}{c} \mathcal{R}_1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \end{array}$	$\begin{array}{c} \mathcal{R}_2 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} \mathcal{R}_{3} \\ 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{array}$	S_1 1 -1 -1 -1 -1 -1 1	S_2 1 -1 1 -1 -1 1 -1 1 -1 -1		P 1 1 1 1 -1 -1 -1 -1

Wang, BQ*, Liu, Aman, Zhang, PRC 106, 064325 (2022)

Symmetry group of Hamitonian / wave function: $\{E,R_1,R_2,R_3,S_1,S_2,S_3,P\}$

 \succ D₂×{E,P}

rotational states with one parity for the quadrupoledeformed nucleus are extended to the states with two parities for the octupole deformed nucleus

空间科学与物理学院 ______school of Space Science and Physics

Even-Even nuclei

$$|I, K, \mathbb{S}\rangle = \frac{1}{\sqrt{1+\delta_{K0}}} \frac{1}{\sqrt{2}} (|IMK\rangle + |IM - K\rangle),$$
$$|I, K, \mathbb{A}\rangle = \frac{1}{\sqrt{2}} (|IMK\rangle - |IM - K\rangle),$$

(r_1, r_2, r_3)	D ₂ group REP	$ I, K, \mathbb{S}\rangle$		$ I, K, \mathbb{A}\rangle$	
8		Ι	K	Ι	K
(+1, +1, +1)	A	Even	Even	Odd	Even
(+1, -1, -1)	B ₁	Even	Odd	Odd	Odd
(-1, +1, -1)	B_2	Odd	Odd	Even	Odd
(-1, -1, +1)	B_3	Odd	Even	Even	Even

Case	Wave function	K	Even I		Odd I	
			p = +1	p = -1	p = +1	p = -1
Ι	$ I, K, \mathbb{S}\rangle$	Odd	B_{1g}	B _{1u}	B _{2g}	B _{2u}
II	$ I, K, \mathbb{A}\rangle$	Odd	B _{2g}	B _{2u}	B _{1g}	B _{1u}
III	$ I, K, \mathbb{A}\rangle$	Even	B _{3g}	B _{3u}	Ag	A _u
IV	$ I, K, \mathbb{S}\rangle$	Even	Ag	A _u	B _{3g}	B _{3u}

s in the figure means $s_{1.}$ For two group representations A_g and B_{3u} , $s_1=s_2$ The reasonable wave functions for excited band are selected by agreeing with the experimental transition properties.

空间科学与物理学院 School of Space Science and Physics

Even-Even nuclei

- The reasonable wave functions for excited band are selected by agreeing with the experimental transition properties.
- Parity + sequence in both ground and excited band: Ag, $(r_1,s_1,p)=(+1,+1,+1)$ Parity - sequence in both ground and excited band: B_{3u} , $(r_1,s_1,p)=(-1,+1,-1)$
- The selected wave functions are also consistent with the conclusion obtained from the perspective of symmetry restoration

In such an assignment, the states occur with two values ± 1 of the quantum number r_1 , r_2 , s_3 , and p, which corresponds to the violation of R_1 , R_2 , S_3 , and P in the intrinsic frame.

While the states occur with single value of r_3 , s_1 , and s_2 in the laboratory frame which corresponds to R_3 , S_1 , and S_2 invariance in the intrinsic frame.

空间科学与物理学院 _school of Space Science and Physics

Even-Even nuclei

The excited band originates from the wobbling excitation of ground band.

 $\frac{\text{Wobbling}}{\text{in } Y_{20} + Y_{22} + Y_{30} \text{ nucleus}}$

Wang, BQ*, Liu, Aman, Zhang, PRC 106, 064325 (2022)

空间科学与物理学院 _ School of Space Science and Physics

Outline

空间科学与物理学院 __School of Space Science and Physics

odd-A nuclei

Ødegård *et al*. PRL 86, 5866 (2001) Jensen *et al*. PRL 89.142503 (2002)

8

空间科学与物理学院 ______school of Space Science and Physics

odd-A nuclei

Nuclei	Z	Ν	configur ation	β	γ	mass rigen	Reference
¹⁰⁵ Pd	46	59	$vh_{11/2}$	0.27	25	100	J. Timár, et al., PRL. 122, 062501 (2019).
¹²⁷ Xe	54	73	vh _{11/2}				S. Chakraborty, et al. PLB 811, 135854 (2020).
¹³⁰ Ba	<mark>56</mark>	<mark>74</mark>	$\pi(h_{11/2})^2$	<mark>0.24</mark>	<mark>21.5</mark>		Q. B. Chen, et al. PRC 100, 061301 (2019).
¹³³ Ba	56	77	$vh_{11/2}$			130	D. K. Rojeeta, et al. PLB 823, 136756 (2021).
¹³³ La	57	76	$\pi h_{11/2}$	0.17	26		S. Biswas, et al., EPJA 55: 159(2019).
¹³⁵ Pr	59	76	$\pi h_{11/2}$	0.17	26		J. T. Matta, et al., PRL 114, 082501 (2015).
¹⁶¹ Lu	71	90	$\pi i_{13/2}$	0.42	20		P. Bringel, et al., EPJA 24, 167 (2005).
¹⁶³ Lu	71	92	$\pi i_{13/2}$	0.42	20		S. W. Ødegård, et al., PRL. 86, 5866 (2001).
¹⁶⁵ Lu	71	94	$\pi i_{13/2}$	0.42	20	160	G. Schönwaßer, et al., PLB 552, 9 (2003).
¹⁶⁷ Lu	71	96	$\pi i_{13/2}$	0.43	19		H. Amro, et al., PLB553, 197 (2003).
¹⁶⁷ Ta	73	94	$\pi i_{13/2}$	0.41	20		D. J. Hartley, et al., PRC 80, 041304(R) (2009).
192 •	70	104	$\pi i_{13/2}$	0.29	21.4		
¹⁰⁵ Au	/9	104	$\pi h_{9/2}$	0.3	20	190	S. Nandi, <i>et al.</i> , PKL 125, 132501 (2020).
¹⁸⁷ Au	79	108	$\pi h_{9/2}$	0.23	23		N. Sensharma, et al., PRL 124, 052501 (2020).

空间科学与物理学院 School of Space Science and Physics

odd-A nuclei

Fingerprint of wobbling band:

- > Sequences of $\Delta I=2$ rotational bands
- Exhibit similar moments of inertia, spin alignments and in-band B(E2) values for ground (n=0) and excited (n=1,2) band
- ➤ the interband $\Delta I = 1, n \rightarrow n 1$ transitions are dominated by the E2 component
- the wobbling energy decreases with spin I, contrary to the behavior expected for even-even nuclei

J. Timár, et al., Phys. Rev. Lett. 122, 062501 (2019)

空间科学与物理学院 __School of Space Science and Physics

odd-A nuclei

Transverse wobbler (TW)

				1/2
to j	$\begin{bmatrix} 1 & J \\ J \end{bmatrix}$	1)][1 .	J_{J_3}	1)][
$n_{\rm Mob} = \overline{T_2}$	$1 + \frac{1}{i} (\frac{1}{7_1})$	- 1) 1 + -	\overline{i} $\overline{7_0}$	1) [
03	- J .01		J 102	·-)

1/2
211

	the orientation of j (// I)	wobbling energy	quasiparticle orbital of j shell
LW	aligned parallel to the m-axis	increases with spin	middle (m-axis)
TW	aligned perpendicular to the m-axis	decreases with spin	bottom (s-axis) top (l-axis)

1

Frauendorf & Dönau, PRC 89, 014322 (2014)

空间科学与物理学院__school of Space Science and Physics

odd-A nuclei

Stability of the wobbling motion in an odd-mass nucleus and the analysis of ¹³⁵Pr Tanabe K and Sugawara-Tanabe K 2017 Phys. Rev. C 95 064315

Comment on "Stability of the wobbling motion in an odd-mass nucleus and the analysis of ¹³⁵Pr" Frauendorf S 2018 Phys. Rev. C 97 069801

Reply to "Comment on 'Stability of the wobbling motion in an odd-mass nucleus and the analysis of ¹³⁵Pr'" Tanabe K 2018 Phys. Rev. C 97 069802

Tilted precession and wobbling in triaxial nuclei,

Lawrie, Shirinda and Petrache 2020 Phys. Rev. C 101 034306

Eur. Phys. J. A (2022) 58:75 https://doi.org/10.1140/epja/s10050-022-00727-5

Regular Article - Theoretical Physics

THE EUROPEAN PHYSICAL JOURNAL A Check for updates

Study of wobbling modes by means of spin coherent state maps

Q. B. Chen^{1,2}, S. Frauendorf^{3,a}

¹ Department of Physics, East China Normal University, Shanghai 200241, China

² Physik-Department, Technische Universität München, 85747 Garching, Germany

³ Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA

空间科学与物理学院 ______school of Space Science and Physics

Employing different parameter sets of moment of inertia

odd-A nuclei

(MOI), several calculated results for ¹⁰⁵Pd could be in good

agreement with the experimental data

configuration	$v(1h_{11/2})^1$
deformation	β~0.27; γ~25°
a footor	$g_{R}=0.43$
g-factor	$g_n = -0.21$
quadrupole moments	Q=3.0eb

$$\mathcal{J}_k = a_k \sqrt{1 + bI(I+1)}$$

J. Timár, et al., Phys. Rev. Lett. 122, 062501 (2019)

参数组	a_m	a_s	a_l	b	$\mathcal{J}_m:\mathcal{J}_s:\mathcal{J}_l$
(A)	6.0	5.4	1.8	0.016	1:0.9:0.3
(B)	6.0	4.2	1.2	0.023	1:0.7:0.2
(C)	6.0	3.0	1.0	0.026	1:0.5:0.17
(D)	12.0	3.6	1.0	0.008	1:0.3:0.08

Take set (A) of MOI results as an example:

azimuthal plot see Refs. Chen, Chen, Luo, Meng and Zhang PRC 96 051303(2017) Chen and Meng, PRC 98, 031303(2018)

School of Space Science and Physics Odd-A nuclei

close to the rigid-body model

空间科学与物理学院

参数组	a_m	a_s	a_l	b	$\mathcal{J}_m:\mathcal{J}_s:\mathcal{J}_l$
(A)	6.0	5.4	1.8	0.016	1:0.9:0.3

The probability distribution of angular momentum on the (θ, ϕ) plane, i.e., azimuthal plot, is shown and corresponding schematic diagram is provided.

空间科学与物理学院 __school of Space Science and Physics

odd-A nuclei

参数组	a_m	a_s	a_l	b	$\mathcal{J}_m:\mathcal{J}_s:\mathcal{J}_l$	
(A)	6.0	5.4	1.8	0.016	1:0.9:0.3	close to the rigid-body model
(B)	6.0	4.2	1.2	0.023	1:0.7:0.2	
(C)	6.0	3.0	1.0	0.026	1:0.5:0.17	
(D)	12.0	3.6	1.0	0.008	1:0.3:0.08	close to the hydrodynamical model

corresponding angular momentum geometry

show distinct modes of rotational excitation

With the increasing of the ratio between the MOI at the *m* and *s* axis, namely Jm/Js, the rotational modes gradually changes from Mode I to Mode II and then to Mode III.

- distinct modes of rotational excitation are shown when Employing different parameter sets of moment of inertia (MOI),
- TW mode is sensitive to the ratio Jm/Js
- ideal precession does not appear, the tunneling between two orientations of angular momentum may be preferable

Zhang, *BQ**, Wang, Liu, Wang, PRC105, 034339 (2022)

空间科学与物理学院 _ School of Space Science and Physics

Outline

空间科学与物理学院

chiral partner

yrast band

wobbling band

First Observation for Chiral-Wobbler in Nuclei, R J Guo, et al. under Review

间科学与物理学院 chool of Space Science and Physics

odd-odd nuclei

Parameters of particle rotor model :

 π g_{9/2} (particle-like) v g_{9/2} (midle subshell) pairing gap 1.40 MeV.

Deformation parameters $(\beta, \gamma) = (0.45, 27.5^{\circ})$ from RMF

moments of inertia ~hydrodynamical

The calculated results reproduced the corresponding experimental data well

空间科学与物理学院 School of Space Science and Physics

Outline

Thank you for your attention!

Appendix

空间科学与物理学院 _School of Space Science and Physics

理论框架

多粒子转子模型哈密顿量:

分:

$$H = \hat{H}_{coll} + \hat{H}_{intr}$$

$$H_{coll} = \sum_{1}^{3} \frac{\hat{R}_{i}^{2}}{2\mathcal{J}_{i}} = \sum_{1}^{3} \frac{\hat{I}_{i}^{2} - \hat{j}_{i}^{2}}{2\mathcal{J}_{i}}$$

内禀部分:

集体部

$$\hat{H}_{intr} = \sum_{\nu} \varepsilon_{p,\nu} a_{p,\nu}^+ a_{p,\nu} + \sum_{\nu'} \varepsilon_{n,\nu'} a_{n,\nu'}^+ a_{n,\nu'}$$

价核子哈密顿量用单-j哈密顿量给出: $h_{sp} = \pm \frac{1}{2} C \{ \cos \gamma (j_3^2 - \frac{j(j+1)}{3}) + \frac{\sin \gamma}{2\sqrt{3}} (j_+^2 + j_-^2) \}$ 对于z个质子和n个中子的体系,内禀波函数 $|\varphi\rangle = (\prod_{i=1}^{z_1} a_{p,\nu_i}^{\dagger}) (\prod_{i=1}^{z_2} a_{p,\bar{\mu}_i}^{\dagger}) (\prod_{i=1}^{z_1} a_{p,\nu_i'}^{\dagger}) (\prod_{i=1}^{z_2} a_{p,\bar{\mu}_i'}^{\dagger}) |0\rangle$

Bohr, Mottelson, Nuclear Structure, Vol. 2 (1975); QI, PLB (2009)

空间科学与物理学院 ______school of Space Science and Physics

附录

理论框架

体系波函数:
$$|IM\rangle = \sum_{K\varphi} c_{K\varphi} |IMK\varphi\rangle$$

 $|IMK\varphi\rangle = \frac{1}{\sqrt{2(1 + \delta_{K0}\delta_{\varphi,\bar{\varphi}})}} (|IMK\rangle|\varphi\rangle + (-1)^{I-K}|IM-K\rangle|\bar{\varphi}\rangle)$

约化电磁跃迁几率:

$$B(\sigma\lambda, I' \to I) = \frac{1}{2I+1} \sum_{\mu M} \left| \left\langle IM \left| \hat{M}(\sigma\lambda, \mu) \right| I'M' \right\rangle \right|^2$$
$$\hat{M}(M1, \mu) = \sqrt{\frac{3}{4\pi}} \frac{e}{2Mc} \left[(g_p - g_R) \hat{j}_{p\mu} + (g_n - g_R) \hat{j}_{n\mu} \right]$$
$$\hat{M}(E2, \mu) = \sqrt{\frac{5}{16\pi}} \hat{Q}_{2\mu}$$

B. Qi et al., Phys. Lett. B 675, 175 (2009).

A. D. Ayangeakaa et al., Phys. Rev. Lett. 110, 172504 (2013).I. Kuti et al., Phys. Rev. Lett. 113, 03 (2014)

空间科学与物理学院 _____school of Space Science and Physics

形状相变+摇摆

Critical point symmetry for odd-odd nuclei and collective multiple chiral doublet bands Y. Zhang, BQ, and S.Q. Zhang SCIENCE CHINA, 64 ,122011 (2021)

空间科学与物理学院 _School of Space Science and Physics

偶偶核的摇摆

公式证明:

Introduce the parameter A_k : $\mathcal{J}_k = \frac{\hbar^2}{2A_k}$

$$\begin{split} H &= A_1 I_1^2 + A_2 I_2^2 + A_3 I_3^2 = A_3 I^2 + H' \\ H' &= \frac{1}{2} (A_2 + A_1 - 2A_3) (I_2^2 + I_1^2) + \frac{1}{2} (A_2 - A_1) (I_2^2 - I_1^2) = \frac{1}{2} \alpha \frac{I_2^2 + I_1^2}{I} + \frac{1}{2} \beta \frac{I_2^2 - I_1^2}{I} \\ \alpha &= (A_2 + A_1 - 2A_3) I, \quad \beta = (A_2 - A_1) I \end{split}$$

Considering the **approximation**

$$[I_{-}, I_{+}] = 2I_3 \approx 2I \quad (I_{\pm} = I_2 \pm iI_1)$$

We introduce the operator

$$c^{\dagger} = \frac{1}{\sqrt{2I}}I_+, c = \frac{1}{\sqrt{2I}}I_-$$

Then $H' = \frac{1}{2}\alpha(c^{\dagger}c + cc^{\dagger}) + \frac{1}{2}\beta(c^{\dagger}c^{\dagger} + cc)$

空间科学与物理学院 _School of Space Science and Physics

公式证明: Introduce $c^{\dagger} = x\hat{c}^{\dagger} + y\hat{c}, \quad \hat{c}^{\dagger} = xc^{\dagger} - yc$ $x, y = \left[\frac{1}{2}\left(\frac{\alpha}{(\alpha^2 - \beta^2)}\right)^{1/2} \pm 1\right)\right]^{1/2}, \ x^2 - y^2 = 1$ $H' = \frac{1}{2}\alpha(c^{\dagger}c + cc^{\dagger}) + \frac{1}{2}\beta(c^{\dagger}c^{\dagger} + cc)$ $=\sqrt{\alpha^2 - \beta^2} [\hat{c}^{\dagger}\hat{c} + \frac{1}{2}] = \hbar\omega(\hat{n} + \frac{1}{2})$ $\hbar\omega = \sqrt{\alpha^2 - \beta^2} = \sqrt{(A_2 + A_1 - 2A_3)^2 I^2 - (A_2 - A_1)^2 I^2}$ $= 2I[(A_2 - A_3)(A_1 - A_3)]^{1/2}$ $= 2I \left[\left(\frac{\hbar^2}{2 \tau_2} - \frac{\hbar^2}{2 \tau_2} \right) \left(\frac{\hbar^2}{2 \tau_1} - \frac{\hbar^2}{2 \tau_2} \right) \right]^{1/2}$

空间科学与物理学院 _____school of Space Science and Physics

三轴自由度的影响

For TRM, $K_m = I-n$ for $\gamma = 30^\circ$ exactly

- 1. Collective Hamiltonian for wobbling modes Q. B. Chen, S. Q. Zhang, P. W. Zhao, and J. Meng, Phys. Rev. C (2014) 90, 044306.
- 2. Collective Hamiltonian and its applications for chiral and wobbling modes, Q. B. Chen, Acta Phys. Pol. B (2015) 8, 545.
- 3. Wobbling geometry in a simple triaxial rotor, W. X. Shi and Q. B. Chen, Chinese Physics C (2015) 39, 054105.
- 4. Wobbling motion in ¹³⁵Pr within a collective Hamiltonian, Q. B. Chen, S. Q. Zhang, and J. Meng, Phys. Rev. C (2016) 94, 054308.
- 5. *Two-dimensional collective Hamiltonian for chiral and wobbling modes*, Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, and J. Meng Phys. Rev. C (2016) 94, 044301.
- 6. Collective Hamiltonian for chiral and wobbling modes: form one- to two-dimensional, Q.B. Chen, Acta Phys. Pol. B (2017) 10, 27.
- 7. Behavior of the collective rotor in wobbling motion, E. Streck, Q. B. Chen, N. Kaiser, et al., Phys. Rev. C (2018) 98, 044314.
- 8. *Two-dimensional collective Hamiltonian for chiral and wobbling modes. II. Electromagnetic transitions*, X. H. Wu, Q. B. Chen, P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C (2018) 98, 064302.
- 9. Experimental Evidence for Transverse Wobbling in ¹⁰⁵Pd J. Timár, Q. B. Chen, et al., Phys. Rev. L (2019) 122, 062501.
- 10. Transverse wobbling in an even-even nucleus, Q. B. Chen, S. Frauendorf, and C. M. Petrache, Phys. Rev. C (2019) 100, 061301(R).
- 11. First Observation of Multiple Transverse Wobbling Bands of Different Kinds in ¹⁸³Au, Nandi, Mukherjee, Q. B. Chen, et al., Phys. Rev. L (2020) 125, 132501.
- 12. g-factor and static quadrupole moment for the wobbling mode in ¹³³La, Q.B. Chen, et al., Phys. Lett. B (2020) 807, 135596.
- 13. Two quasiparticle wobbling in the even-even nucleus ¹³⁰Ba Y.K.Wang, F.Q.Chen, P.W.Zhao, Phys. Lett. B802(2020)135246.
- Microscopic investigation on the existence of transverse wobbling under the effect of rotational alignment: The ¹³⁶Nd case F. Q. Chen and C. M. Petrache, Phys. Rev. C (2021) 103, 064319.
- 15. Study of wobbling modes by means of spin coherent state maps, Q. B. Chen, S. Frauendorf, Eur. Phys. J. A (2022) 58, 75.
- 16. Dynamics of rotation in chiral nuclei, Z. X. Ren, P. W. Zhao, and J. Meng, Phys. Rev. C (2022) 105, L011301.

••••••

空间科学与物理学院__School of Space Science and Physics

建议的摇摆带

将31+和22+态建议为候选摇摆带的带首

空间科学与物理学院 _school of Space Science and Physics

BQ*, Zhang, Wang, Q.B.Chen*, JPG 48 (2021) 055102

空间科学与物理学院 ______school of Space Science and Physics

41

*

间科学与物理学院

hool of Space Science and Physics

空间科学与物理学院 __School of Space Science and Physics

手征摇摆共存

空间科学与物理学院 ______school of Space Science and Physics

odd-odd nuclei

手征摇摆共存

带3&4	相比	带1&2
有摇摆	激发	的运动

手征和摇摆如何共存 还需讨论和澄清!

Jia, Wang*, BQ, Liu, Zhu, PLB 833, 137303 (2022)

