

Chirality and Wobbling in Atomic Nuclei (CWAN'23) July 10 - July 14, 2023, Huizhou, China

Study of chirality and wobbling within CDFT+PRM

Qibo Chen (陈启博) East China Normal University

Outline

Chirality and wobbling

- **CDFT+PRM**
- **CDFT+PRM** for chirality
- **CDFT+PRM** for wobbling
- **Summary**

Wobbling and chirality

Nuclear wobbling:

Bohr & Mottelson1975, Vol. II, page 190

►m

 $j \perp m$ -axis

 $\mathcal{J}_m > \mathcal{J}_s, \mathcal{J}_l$

Wobbler

R

Nuclear chirality

Frauendorf & Meng, NPA 617, 131 (1997)

Tilted rotation of triaxial nuclei	510 Citations
<u>Frauendorf, S</u> and <u>Meng, J</u>	
May 5 1997 NUCLEAR PHYSICS A 617 (2) , pp.131-147	20
	References
The Tilted Axis Cranking theory is applied to the model of two particles coupled to a triaxial rotor.	
Comparing with the exact quantal solutions, the interpretation and quality of the mean field	
approximation is studied. Conditions are discussed when the axis of rotation Show more	
* Links Free Submitted Article From Repository Full Text at Publisher •••	Related records

Wobbling in odd-mass nuclei Frauendorf & Dönau, PRC 89, 014322 (2014) Longitudinal Transverse Wobbler

Ju

(a) Chiral objects

c.f. Prof. Frauendorf's and Prof. Meng's talk

j//m-axis

 $\mathcal{J}_m > \mathcal{J}_s, \mathcal{J}_l$

Coupling and fluctuation?

Chiral doublet bands and wobbling multi-phonon bands: How to deal with the coupling between the collective motion and particle motion? How to deal with the quantal fluctuation of angular momentum orientation?

Chiral doublet bands

Wobbling bands

Particle rotor model

The Nobel Prize in Physics 1975 was awarded jointly to Aage Niels Bohr, Ben Roy Mottelson and Leo James Rainwater "for the discovery of the connection between collective motion and particle motion in atomic nuclei and the development of the theory of the structure of the atomic nucleus based on this connection."

https://www.nobelprize.org/prizes/physics/1975/summary/

 PRM: the rotating nuclear system is described as a coupling system of a core (with different shape) and valence particles (one, two, ...)

 $\hat{H}_{ ext{PRM}} = \hat{H}_{ ext{coll}} + \hat{H}_{ ext{intr}}$

Bohr & Mottelson1975, Vol. II, Appendix 4A

$$\hat{H}_{\text{coll}} = \sum_{i=1}^{3} \frac{\hat{R}_{i}^{2}}{2\mathcal{J}_{i}} = \sum_{i=1}^{3} \frac{(\hat{I}_{i} - \hat{j}_{i})^{2}}{2\mathcal{J}_{i}} \quad \hat{H}_{\text{intr}} = \sum_{\nu} \varepsilon_{\nu} a_{\nu}^{\dagger} a_{\nu}$$

Achievements: simple, economic, quantal model

To describe the wobbling and chiral motion, triaxial particle rotor model is developed: PRC 82, 067302 (2010); PRL 110, 1772504 (2013); PRC 94, 054308 (2016); PRC 98, 044314 (2018); PLB 782, 744 (2018); PRC 100, 061301(R) (2019); PLB 807, 135596 (2020); PLB 807, 135568 (2020); EPJA 58, 75 (2022)

Four-j shells PRM

• Four-j shells PRM was developed to describe the chirality of ¹³⁶Nd

QB&Lv&Petrache&Meng, PLB 782, 744 (2018)

PRM describes the experimental energy spectra well and provides the chiral geometry picture.

c.f. Prof. Petrache's talk

Configuration and deformation?

Covariant density functional theory

- Covariant density functional theory: a relativistic quantum many-body theory that based on effective field theory and density functional theory.
- microscopic, universal, reliable, ...

Constraint calculations are developed to obtain deformation and nucleon occupation information. *PRC 73, 037303 (2006)*

Multiple chiral doublets (McD)

• McD: more than one pair of chiral doublet bands in **one** single nucleus

Meng&Peng&Zhang&Zhou, PRC73, 037303 (2006)

Peng et al., PRC 98, 024320 (2018);

Hu et al., PRC104, 064325 (2021)

covariant density functional theory (CDFT)

c.f. Prof. Meng's talk

How do we study

- A combination of PRM (quantal descriptions) and CDFT (microscopic inputs) is used to investigate nuclear rotation; a standard processes is carried out step by step...
 - experimental information: energy level scheme, EM transition
 - **1. Learn from data:** analysis key physical quantity (rotational frequency, quasiparticle alignment...)
 - **2. CDFT:** constrained calculations to learn the occupations of valence nucleons (configuration), to get reliable deformation information
 - 3. **PRM:** describe data, study the underlying physics

balanced "efficiency" and "fairness" work rather well for complicated level schemes

- ✓ PRL 110, 172504 (2013)
- ✓ PRL 112, 202502 (2014)
- ✓ PRL 113, 032501 (2014)
- ✓ PRL 116, 112501 (2016)
- ✓ PRL 120, 022502 (2018)
- ✓ PRL 122, 062501 (2019)
- ✓ PRL 124, 052501 (2020)
- ✓ PRL 125, 132501 (2020)

✓

• In the following, some of results will introduced.

Outline

CDFT+PRM for chirality

McD in ^{133}Ce

• McD in ¹³³Ce: first application, 2013, 10th anniversary

CDFT+PRM for chirality

- ¹³³Ce: McD, triaxial shape coexistence. *PRL 110, 172504 (2013)*
- ¹⁰³Rh: McD with identical conf., robustness. *PRL* 113, 032501 (2014)
- ¹⁰⁶Ag: band-crossing, chiral conundrum. *PRL* 112, 202502 (2014)
- ⁷⁸Br: McD with octupole correlations. *PRL 116, 112501 (2016)*
- ¹³³La: chirality. *PRC* 94, 064309 (2016)
- ¹²⁸Cs: g-factor. *PRL* 120, 022502 (2018); *PRC* 106, 014318 (2022)
- ¹³⁶Nd: McD in e-e nucleus, 4-j PRM. *PLB* 782, 744 (2018)
- Co isotopes: McD prediction. PRC 98, 024320 (2018)
- ⁶⁰Ni: chirality prediction. *PLB* 793, 303 (2019)
- ¹³⁵Nd: McD. *PRC* 100, 024314 (2019)
- ¹⁹⁵Tl: chirality and planar rotation. *PLB 806, 135489 (2020)*
- ¹³⁷Nd: McD. *EPJA* 56, 208 (2020)
- ⁸¹Kr: McD and pseudospin doublets. *PLB* 827, 137006 (2022)

A~60

A~80

A~100

A~130

A~190

14 papers: 5PRL+4PLB+4PRC+1EPJA

Particle-hole calculations with g=270: q with m-axis, φ with s-axis

The values +1, -1, +1, -1, ... are the eigenvalues of the A=R3(pi/2)C, introduced in the Koike2004PRL paper. The B(M1) is enhanced between opposite A values.

The energy difference at I=15 and 17 is very small (<6 keV)

B(M1) staggering

Particle-hole calculations with g=270: q with m-axis, φ with s-axis

It looks that the yrast and yrare states at I=15, 16 should interchange

B(M1) staggering

• Particle-hole calculations with g=270

Interchange: organize the band according to the a-plot

The question: why a symmetric wave function corresponds to a higher energy, while an anti-symmetric wave function corresponds to a lower energy at I=15, 16? Not solved yet.

Outline

CDFT+PRM for wobbling

Wobbling in ¹⁰⁵Pd

• Wobbling in ¹⁰⁵Pd : first application, 2019

PHYSICAL REVIEW LETTERS 122, 062501 (2019)

Experimental Evidence for Transverse Wobbling in ¹⁰⁵Pd

J. Timár,^{1,*} Q. B. Chen,² B. Kruzsicz,¹ D. Sohler,¹ I. Kuti,¹ S. Q. Zhang,³ J. Meng,³ P. Joshi,⁴ R. Wadsworth,⁴ K. Starosta,⁵ A. Algora,^{1,6} P. Bednarczyk,⁷ D. Curien,⁸ Zs. Dombrádi,¹ G. Duchêne,⁸ A. Gizon,⁹ J. Gizon,⁹ D. G. Jenkins,⁴ T. Koike,¹⁰ A. Krasznahorkay,¹ J. Molnár,¹ B. M. Nyakó,¹ E. S. Paul,¹¹ G. Rainovski,¹² J. N. Scheurer,¹³ A. J. Simons,⁴ C. Vaman,¹⁴ and L. Zolnai¹

CDFT+PRM for wobbling

- ¹⁰⁵Pd: neutron wobbler, mixing ratio has positive (opposite) sign. *PRL 112, 062501 (2019)*
- ¹³⁰Ba: e-e transverse wobbler, mixing ratio is suppressed. *PRC 100, 061301(R) (2019)*
- ¹⁸³Au: another evidence for triaxial shape coexistence. PRL 125, 132501 (2020)
- ¹⁸⁷Au: along inter-mediate axis leads to longitudinal wobbling. *PRL* 124, 052501 (2020)
- Ni isotopes: wobbling prediction. *PRC 104, 064325 (2021)*

The TW picture in even-even nucleus is the same as the one in the odd-mass nucleus!

New observables

g-factor and static quadrupole moment

Laskar et al., PRC 101, 034315 (2020): Exp QB, Frauendorf, Kaiser, Meißner, J.Meng, PLB 807, 135596 (2020), ¹³³La Broocks, QB, Kaiser, Meißner, EPJA 57, 161 (2021), ¹³⁵Pr, ¹⁰⁵Pd, ¹⁸⁷Au

More experimental measurements?

*Influences on E*_{wob}: *rotation*

$$\hat{H}_{\rm coll} = -\frac{\hbar^2}{2\sqrt{B(\varphi)}} \frac{\partial}{\partial \varphi} \frac{1}{\sqrt{B(\varphi)}} \frac{\partial}{\partial \varphi} + V(\varphi),$$

QB, S.Q.Zhang, P.W.Zhao, J.Meng, PRC 90, 044306 (2014) QB, S.Q.Zhang, J.Meng, PRC 94, 054308 (2016)

Collective Hamiltonian calculations: collective potential changes with rotation due to the Coriolis force (from one center to double centers to one center), Ewob decrease and then increase.

Influences on E_{wob}: *deformation*

PRM calculations (w/o HFA): triaxiality (MoI ratios) determines the critical spin, beta and MoI determine the magnitude.

H.M.Dai, QB, in preparation

Spin I (ħ)

Influences on E_{wob}: Fermi surface

S.H.Li, H.M.Dai, QB, in preparation

Compare with TiP

• **Tilted axis precession:** *Lawrie&Shirinda&PetrachePRC* 101, 034306 (2020)

Lawrie (TiP): from the paper

PRM+approx. (frozen alignment): Only |j=11/2, k_s=11/2> is used to couple the rotor. Basis no: (2I+1)/2. [Not a realistic PRM calculation]

Disagreement in the high spin region, why?

Summary

- CDFT+PRM is a useful method to study the chiral and wobbling nuclei.
- 15+ candidates for wobbling bands in A~100, 130, 160, and 190 mass regions.
- 50+ candidates for chiral doublet bands in A~80, 100, 130, and 190 mass regions.

Collaborations

Shanghai Huaming Dai Shihua Li Bin Hu Bowen Sun Yingzhi Ji	Beijing Jie Meng Shuangquan Zhang Pengwei Zhao Jing Peng Zhenhua Zhang	Shandong Shouyu Wang Bin Qi Chen Liu Hui Zhang Lin Mu	Lanzhou Fangqi Chen Bingfeng Lv Guangdong Jiangming Yao
Germany Ulf-G. Meissner Norbert Kaiser Egor Streck Catharina Broocks	US Stefan Frauendorf Umesh Garg Akaa Ayangeakaa Nirupama Sensharma	Russia Rostislav Jolos Canada Krzysztof Starosta	Japan Takeshi Koike France Costel Petrache
South Africa Rainer Lieder Robert BarkHungary Janos Timar Istvan KutiPoland Julian Srebrny Ernest GrodnerIndia Gopal Mukherjee Soumen Nandi			

Thank you!

Compare with TiP

• Tilted axis precession: PRC 101, 034306 (2020)

Lawrie (TiP): from the paper

PRM+approx. (frozen alignment): Only |j=11/2, k_s=11/2> is used to couple the rotor. Basis no: (2I+1)/2. [Not an exact **PRM calculation**]

Disagreement: the high spin region?

PRM for chirality

 PRM for chirality: excited chiral doublet bands, orientation evolution, rotor behavior, planar contribution

QB&Yao&Zhang&Qi, PRC 82, 067302 (2010)

QB&Starosta&Koike, PRC 97, 041303(R) (2018)

QB&Meng, PRC 98, 031303(R) (2018)

QB&Kaiser&Meissner&Meng, PRC 99, 064326 (2019)

Chirality in ¹³⁵*Pr*

• **Chirality in ¹³⁵Pr: coexistence with wobbling**

Sensharma et al., submitted

Chirality in ¹³⁵Pr

• **Chirality in ¹³⁵Pr: coexistence with wobbling**

Sensharma et al., submitted

Similar distributions for bands DB1 and DB2. Neutron is not a pure hole and l-axis component is small. Aplanar orientation closed to s-m plane.