Effective masses in Relativistic Brueckner-Hartree-Fock Theory

Huizhou, 10.07.2023

Peter Ring Technical University Munich Peking University

Collaborators: Sibo Wang, Hui Tong, Qiang Zhao, Chencan Wang, Jie Meng

Content

- Motivation
- Relativistic Brueckner-Hartree-Fock Theory
- Applications in finite systems
- Full solution for nuclear matter
- Effective masses and their isospin dependence

Motivation

the nuclear many-body problem:

• Light nuclei:

exact solution by config. mixing ab-initio possible complicated results non-relativistic

- Heavy, superheavy nuclei, fission etc. density functional threory simple universal description easy to visualize phenomenological
- Goal: Ab-initio derivation of density functional

 Ab-initio derivation of density functional theory first attempts of ab-initio go back to the fifties: Brueckner theory:

> based on the mean-field concept effective density-dep. interaction: G[p] mother of nuclear density functional theory

- Non-relativistic BHF fails: Three-body forces
- 1980: Relativistic BHF: no NNN necessary problems:
 - a) no exact solution of RBHF in nuclear matter many different approximations
 - b) no solution of RBHF in finite nuclei (tensor?)

Why covariant ?

- 1) Large fields $V \approx 350 \text{ MeV}$, $S \approx -400 \text{ MeV}$
- 2) Large spin-orbit splittings in nuclei
- 3) Success of relativistic Brueckner calculations
- 4) Success of intermediate energy proton scattering
- 5) Relativistic saturation mechanism
- 6) Consistent treatment of time-odd fields
- 7) Natural explanation of pseudospin symmetry
- 8) Connection to underlying theories ?
- 9) Use as many symmetries as possible in phenomenology

Peter Ring, Effective Masses in Relativistic Brueckner-Hartree-Fock Theory, Huizhou, Jul 10,.2023

Brueckner theory (1958):

Brueckner,Gammel, Phys. Rev. 109, 1023 (1958)

- The nucleons in the interior of the nuclear medium do not feel the same bare force V, as the nucleons feel in free space.
- They feel an effective force G.
- The Pauli principle prohibits the scattering into states, which are already occupied in the medium.
- Therefore this force $G(\rho)$ depends on the density
- This force G is much weaker than the bare force V.
- Nucleons move nearly free in the nuclear medium and feel only a strong attraction at the surface (shell model)

Ab-initio: Relativistic Brueckner Hartree-Fock:

Summing up all ladder diagramms

Ab-initio: Relativistic Brueckner Hartree-Fock:

Bare nucleon-nucleon force:

N	Meson		Potential A		Potential B		Potential C	
Para	m_{α} (MeV)	$g_{\alpha}^{2}/4\pi$	Λ_{α} (GeV)	$g_{\alpha}^2/4\pi$	Λ_{α} (GeV)	$g_{\alpha}^{2}/4\pi$	Λ_{α} (GeV)	
π	138.03	14.9	1.05	14.6	1.2	14.6	1.3	
η	548.8	7	1.5	5	1.5	3	1.5	
ρ	769	0.99	1.3	0.95	1.3	0.95	1.3	
ω	782.6	20	1.5	20	1.5	20	1.5	
δ	983	0.7709	2.0	3.1155	1.5	5.0742	1.5	
σ	550	8.3141	2.0	8.0769	2.0	8.0279	1.8	

Dirac-Brueckner-Hartree-Fock in nuclear matter

Brockmann and Machleidt, PRC 42, 1965 (1990).

Dirac-Brueckner-Hartree-Fock in nuclear matter

non-relativistic calculations with 3-body-forces vs. relativistic calculations without 3-body forces

Sammarruca, Chen, Coraggio, Itaco, Machleidt, PRC 86, 054317 (2012)

Finite Nuclei: Local density approximation (LDA):

- 1. solve the Brueckner-Hartree-Fock equations in nuclear matter at various densities ρ
- 2. map the density dependent results on a Walecka model with density dependent couplings
- 3. this yields $\rightarrow g_{\sigma}(\rho), g_{\omega}(\rho), \dots$
- 4. but: this mapping is not unique !

F

Brockmann and Toki, PRL 68, 3408 (1992)

Relativistic BHf for finite nuclei:

Relativistic BHf for finite nuclei:

Relativistic BHF for finite nuclei:

S.H. Shen et al (2017).

Convergenge with the cuf-off in single particle energy:

22/40

Bulk properties of ¹⁶O:

 Energy per particle and charge radius of ¹⁶O calculated by RBHF, nonrelativistic BHF, BHF with EDA <u>Müther1990PRC</u>, RHF with PKO1 Long2010PLB (left); and RBHF with LDA (right) :

- Relativistic effect is very important to improve the description.
- There is a big uncertainty between different LDA calculations.

Results for ¹⁶O:

	$E \ (MeV)$	r_c (fm)	r_m (fm)	$\Delta E_{\pi 1p}^{ls}$ (MeV)		
Exp.	-127.6	2.70	2.54	6.3		
DDRHF, PKO1	-128.3	2.68	2.54	6.4	Long et al, (2006)	
DDRHF, PKA1	-127.0	2.80	2.67	6.0	Long et al, (2007)	
RBHF, Bonn A	-120.2	2.53	2.39	5.3	S. H. Shan at al (2017)	
RBHF (DWS)	-120.7	2.52	2.38	6.0	5.11. Shen et al (2017).	
BHF, AV18	-134.2	_	1.95	13.0	Hu et al, (2017)	
CC, $N^{3}LO$	-120.9	_	2.30	_	Hagen et al, (2009)	
IM-SRG, N ³ LO	-122.9	_	_	_	Hergert et al, (2013)	
NCSM, $N^{3}LO$	-119.7	_	_	_	Roth et al, (2011)	
SCGF, N ³ LO	-122.0	_	_	_	Cipollone et al, (2013)	
NLEFT, $N^{2}LO$	-121.4	_	_	_	Laehde et al, (2014)	
QMC, $N^{2}LO$	-87.0	2.76	_	_	Lonardoni et el, (2018	

Single particle spectrum:

a first *ab initio* calculations for finite nuclei in the **relativistic** scheme
 Spin-orbit splitting is reproduced well from the bare interaction
 benchmark for various LDA calculations

Different ab initio Methods for ⁴⁰Ca and ⁴⁸Ca

Energies, charge radii, matter radii, and π1d spin-orbit splittings of ⁴⁰Ca and ⁴⁸Ca calculated by RBHF with Bonn A, comparing with data, CC with N³LO G.
 Hagen, et al., *PRC* 82, 034330 (2010) and with AV18 G. Hagen, et al., *PRC* 76, 044305 (2007), BHF B. Hu, et al., *PRC* 95, 034321 (2017), NCSM R. Roth, et al., *PRL* 99, 092501 (2007).

	⁴⁰ Ca				⁴⁸ Ca		
	E (MeV)	r _c (fm)	r _m (fm)	$\Delta E_{\pi 1d}^{Is}$ (MeV)	E (MeV)	r _c (fm)	$\Delta E_{\pi 1d}^{Is}$ (MeV)
Exp.	-342.1	3.48	-	6.6 ± 2.5	-416.1	3.48	4.7
RBHF, Bonn A	-306.1	3.22	3.10	5.9	-357.3	3.25	2.7
CC, N ³ LO	-345.2	-	-	-	-396.5	-	-
CC, AV18	-502.9	-	-	-	-	-	-
BHF, AV18	-552.1	-	2.20	24.9	-	-	-
NCSM, AV18	-461.8	-	2.27	-	-	-	-

For RBHF Storage: 1100 GB CPU time: 1720 h (=72d) Storage: 1800 GB CPU time: 4900 h (=204 d)

- Results for ⁴⁰Ca and ⁴⁸Ca given by RBHF are similar as for ¹⁶O.
- CC with N³LO reproduce the binding energy well, while other nonrelativistic calculations give too much binding and too small radii.

Problems of RBHF in finite nuclei:

- Limitation to light spherical nuclei (¹⁶O, Ca, ...) limitation in memory limitation in time (no parallelization for inversion)
- 2. Future goal: Softening of the bare relativistic force relativistic V_{lowk} (derived in nuclear matter)
- 3. Problem (since 40 years): There is no full solution of RBHF in nuclear matter !

Relativistic Hartree-Fock in nucl. matter

$$H = H_0 + \Sigma = \beta M + \vec{\alpha}\vec{k} + \Sigma$$

Self-energy Σ in the Walecka model:

$$\Sigma = \beta S + V_0 + \vec{\alpha} \vec{V} = \begin{pmatrix} S + V_0 & \vec{\sigma} \vec{V} \\ \vec{\sigma} \vec{V} & -S + V_0 \end{pmatrix}$$

Self-energy Σ in BHF:

$$\Sigma_{12} = \sum_{34} G[\rho]_{1324} \rho_{43} = \begin{pmatrix} \Sigma^{++} & \Sigma^{+-} \\ \Sigma^{-+} & \Sigma^{--} \end{pmatrix}$$

Conventional solution of RBHF in nucl. Matter:

Thompson-equation: (3D reduction of the Bethe-Salpeter Equation)

$$T^{++++}(E) = V^{++++} + V^{++++} \frac{1}{E - E_{kin}} T^{++++}(E)$$

Bethe-Goldstone equation

$$G^{++++}(W) = V^{++++} + V^{++++} \frac{Q}{W - E_{56}} G^{++++}(W)$$

Self energy:

$$\Sigma_{12}^{++} = \sum_{34} G_{1324}^{+++++} \rho_{43}^{++} \qquad \Sigma^{-+} = ???, \qquad \Sigma^{--} = ???$$

Perturbation theory:

Anastasio et al, PRC 23 (1981)

Projection onto Lorentz invariants: Horowitz et al NPA 464 (1987)

Greens-function techniques:

Weigel et al, PRC 38 (1988)

Momentum dependence of $\Sigma^{++}(p)$ is used to determine S and V₀ Brockmann et al, PRC 42 (1990)

Effective DBHF-method,

Schiller et al, EPJA 11 (2001)

Full solution ????,

Katayama et al, PLB 747 (2015)

Full solution Spectator-Method de Jong, Lenske, PRC 890 (1998)

Full solution for G⁺⁺⁺⁺, G⁺⁻⁺⁺, G⁻⁻⁺⁺, ...

$$G^{-+++}(W) = V^{-+++} + V^{-+++} \frac{Q}{W - E_{56}} G^{++++}(W)$$

$${}^{0}G_{J}^{-+++} = {}^{0}V_{J}^{-+++} + \int \frac{M_{\mathrm{av}}^{*2}}{E_{\mathrm{av}}^{*2}} \frac{Q_{\mathrm{av}}}{W - 2E_{\mathrm{av}}} \left[{}^{0}V_{J}^{-+++} \cdot {}^{0}G_{J}^{++++} + {}^{2}V_{J}^{-+++} \cdot {}^{3}G_{J}^{++++} \right],$$

$${}^{1}G_{J}^{-+++} = {}^{1}V_{J}^{-+++} + \int \frac{M_{\mathrm{av}}^{*2}}{E_{\mathrm{av}}^{*2}} \frac{Q_{\mathrm{av}}}{W - 2E_{\mathrm{av}}} \left[{}^{3}V_{J}^{-+++} \cdot {}^{2}G_{J}^{++++} + {}^{1}V_{J}^{-+++} \cdot {}^{1}G_{J}^{++++} \right],$$

$${}^{2}G_{J}^{-+++} = {}^{2}V_{J}^{-+++} + \int \frac{M_{\mathrm{av}}^{*2}}{E_{\mathrm{av}}^{*2}} \frac{Q_{\mathrm{av}}}{W - 2E_{\mathrm{av}}} \left[{}^{0}V_{J}^{-+++} \cdot {}^{2}G_{J}^{++++} + {}^{2}V_{J}^{-+++} \cdot {}^{1}G_{J}^{++++} \right],$$

$${}^{3}G_{J}^{-+++} = {}^{3}V_{J}^{-+++} + \int \frac{M_{\mathrm{av}}^{*2}}{E_{\mathrm{av}}^{*2}} \frac{Q_{\mathrm{av}}}{W - 2E_{\mathrm{av}}} \left[{}^{3}V_{J}^{-+++} \cdot {}^{0}G_{J}^{++++} + {}^{1}V_{J}^{-+++} \cdot {}^{3}G_{J}^{++++} \right],$$

Sibo Wang, Ziang Zhao, P.R. and Jie Meng, PRC 103, 054301 (2021)

Results for symmetric nuclear matter:

Sibo Wang, Ziang Zhao, P.R. and Jie Meng, PRC 103, 054301 (2021)

Momentum dependence of the effective mass:

33/40

Density dependence:

34/40

Equation of state:

Properties of symmetric nuclear matter:

-

Potential	$ ho_0 [{\rm fm}^{-3}]$	E/A [MeV]	K_{∞} [MeV]	M_D^*/M
RBHF Bonn A	0.188	-15.40	258	0.55
$\rm RBHF \ Bonn \ B$	0.164	-13.36	206	0.61
$\rm RBHF \ Bonn \ C$	0.144	-12.09	150	0.65
BHF Bonn A	0.428	-23.55	204	
$\rm BHF \ Bonn \ B$	0.309	-18.30	160	
BHF Bonn C	0.247	-15.75	103	
NL3	0.148	-16.30	272	0.60
DD-ME2	0.152	-16.14	251	0.57
DD-PC1	0.152	-16.06	230	0.58
PC-PK1	0.154	-16.12	238	0.59
PKO1	0.152	-16.00	250	0.59
Empirical	0.16 ± 0.01	$-16{\pm}1$	240 ± 20	

-

Isospin dependence of the effective Dirac mass:

asymmetry parameter: $\alpha = (\rho_n - \rho_p)/\rho$ at saturation

Symmetry energy:

Peter Ring, Effective Masses in Relativistic Brueckner-Hartree-Fock Theory, Huizhou, Jul 10, 2023

38/40

mass-radius relations for neutron stars:

39/40

Conclusions:

- RBHF is a successful microscopic tool
- Full solution in nuclear matter was missing since 40 years
 This gap is now solved

Exact results are in agreement with earlier approximations

How to improve the results?

- Relativistic V_{lowk} ?
- Other relativistic NN-forces ?
- Relativistic NNN-forces ?
- Extended Brueckner theory (3 hole lines ...)?

Chiral rel. NNLO force:

Lu, et al., PRC 103, 054301 (2021)

Chiral rel. NNLO force:

Outlook for the future:

• simplify the calculations:

Brueckner theory with renormalized forces $(V_{low k}) \dots$

Local density approximation under control

- heavy nuclei and the tensor force
- open shell nuclei: pairing, deformation
- optical potential
- short range correlations

Thanks to my collaborators:

Shihang Shen(Jülich)S.Q. Zhang(Beijing)Jie Meng(Beijing)Haozhao Liang(RIKEN)Sibo Wang(Beijing)Hui Tong(Beijing)Qiang Zhao(Beijing)Chencan Wang(Beijing)

S. Shen, *et al.*, *Chin. Phys. Lett.* **33**, 102103 (2016) S. Shen, *et al.*, *Phys. Rev C* **96**, 014316 (2017)

- S. Shen, et al., Phys. Lett. B 781, 227 (2018)
- S. Shen, et al., Phys. Rev. C 97, 054312 (2018)
- S. Shen, et al., Phys. Lett. B 778, 344 (2018)
- S. Shen, et al., Prog. Part. Nucl. Phys. 109, 103713 (2019)S
- S. Wang et al., Phys. Rev. C 103, 054319 (2021)
- S. Wang et el., Phys. Rev. C 106, 021305 (2022)

