An Exact Algorithm for the Linear Tape Scheduling Problem

Valentin Honoré, Bertrand Simon, Frédéric Suter

IN2P3 Computing Center / CNRS, Villeurbanne

FJPPL - February 2023

Tape usage today

(or 11 football fields)

 \approx 20TB on 1000s $\times\,1 km$ read at 10m/s – 100s MB/s

https://commons.wikimedia.org/wiki/ File:LT02-cart-wo-top-shell.jpg https://commons.wikimedia.org/wiki/ File:Usain_Bolt_Rio_100m_final_2016i-cr.jpg

Primordial for HTC (High Throughput Computing)

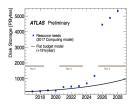
also: media companies, cloud archive...

 $\textcircled{\sc b}$ Impressive technology improvements density: + 30% / year (vs HDD: + 8%)

 high latency (mount, load, position \rightarrow few mn) Adapted for Write Once Read Many

Why not use hard drives?

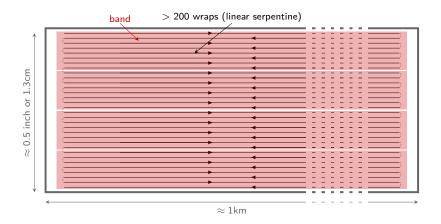
up to 6-10 times cheaper overall (before 2020)



[Xin Zhao, HEPIX 2018]

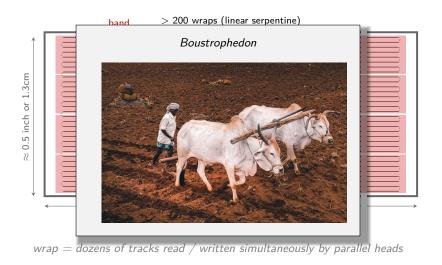
air gap, power failure, lifetime

Overview of a tape

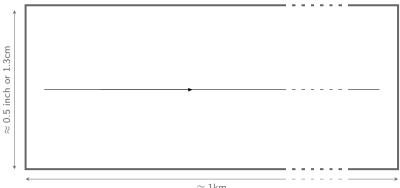


wrap = dozens of tracks read / written simultaneously by parallel heads

Overview of a tape



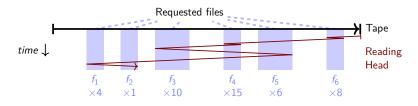
Overview of our tape model



 $\approx 1 \text{km}$

[CardonhaReal'16]

Linear Tape Scheduling Problem



Assumptions:

- files are read left-to-right
- start on the right
- constant speed

Input:

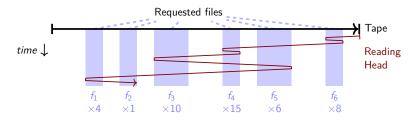
- tape of n_f consecutive files
- *n* file requests (44 here)
- n_{req} distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files

[CardonhaReal'16]

Linear Tape Scheduling Problem



Assumptions:

- files are read left-to-right
- start on the right
- constant speed
- [new] U-turn penalty U

Input:

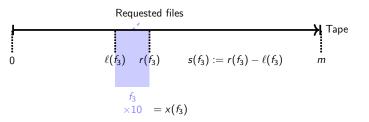
- tape of n_f consecutive files
- *n* file requests (44 here)
- *n_{req}* distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files

[CardonhaReal'16]

Linear Tape Scheduling Problem



Assumptions:

- files are read left-to-right
- start on the right
- constant speed
- [new] U-turn penalty U

Input:

- tape of n_f consecutive files
- *n* file requests (44 here)
- n_{req} distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files

Related to the Linear Tape Scheduling Problem

Travelling Salesperson Problem (TSP)

- super-famous NP-hard problem
- recent $(1.5 10^{-36})$ approximation [KarlinKG'21]
- implication of the set of the

Minimum Latency Problem / TRP (Repair) - variant

- \bigcirc minimize average service time $\in P$ on the real line
- delays to repair a node: complexity open

Dial-a-ride variant on the real line

 $\blacktriangleright \approx$ LTSP but with overlapping files in both directions \longrightarrow NP-hard

Tapes except LTSP: 2 specific experimental papers in the 90's

Structural results

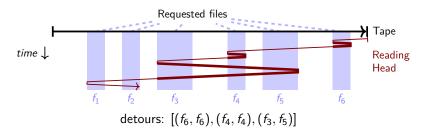
Any optimal solution

- after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours)

A solution includes the **detour** (a,b) with $a \le b$ if:

• the 1st time the head reaches $\ell(a)$, go straight to r(b), back to $\ell(a)$



Structural results

Any optimal solution

- after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours) A solution includes the detour (a,b) with a ≤ b if: the 1st time the head reaches l(a), go straight to r(b), back to l(a)

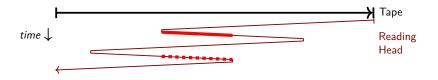
Lemma: detours never partially overlap (strictly laminar)

Structural results

Any optimal solution

- after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

A solution (Detours) A solution includes the detour (a,b) with a ≤ b if: the 1st time the head reaches l(a), go straight to r(b), back to l(a)



Lemma: detours never partially overlap (strictly laminar)

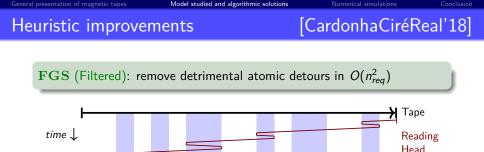
Naive algorithms

 $\operatorname{\mathbf{NoDetour:}}$ go to the leftmost request, then to the rightmost

can be arbitrarily bad (place urgent requests on the right)

GS (Greedy Schedule): do all atomic detours, *i.e.*, $\{(f_i, f_i)\}_{\forall i}$

Lemma [CardonhaReal'16] : **GS** is a 3-approximation if U = 0Proof: does ≤ 3 times the optimal distance before reading each request

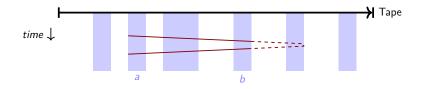


NFGS (Non-atomic): greedily add long detours if currently beneficial. Make one pass from left to right. Complexity in $O(n_{reg}^3)$

Each cell: three parameters $T[a, b, n_{skip}]$

- compute the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.

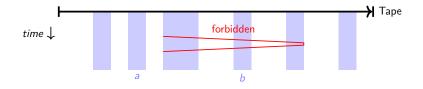
 \Rightarrow value \approx cost contribution from 'first r(b)' to 'r(b) after reading a'



Each cell: three parameters $T[a, b, n_{skip}]$

- compute the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.

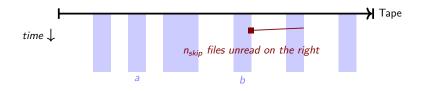
 \Rightarrow value \approx cost contribution from 'first r(b)' to 'r(b) after reading a'



Each cell: three parameters $T[a, b, n_{skip}]$

- compute the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.

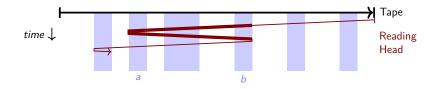
 \Rightarrow value \approx cost contribution from 'first r(b)' to 'r(b) after reading a'



Each cell: three parameters $T[a, b, n_{skip}]$

- compute the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.

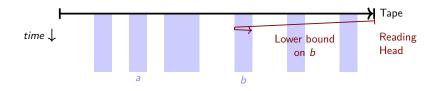
 \Rightarrow value \approx cost contribution from 'first r(b)' to 'r(b) after reading a'



Each cell: three parameters $T[a, b, n_{skip}]$

- compute the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.

 \Rightarrow value \approx cost contribution from 'first r(b)' to 'r(b) after reading a'

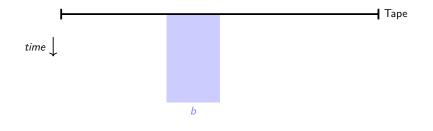


Dynamic program: base case, a = b

 $a = b \implies$ a detour starts at $\ell(b)$

 $n_\ell(b) := \#$ file requests strictly on the left of b

$$T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$$

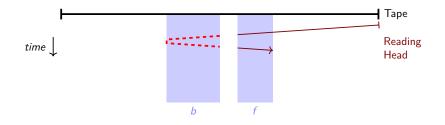


Dynamic program: base case, a = b

 $a = b \implies$ a detour starts at $\ell(b)$

 $n_\ell(b) := \#$ file requests strictly on the left of b

 $T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$

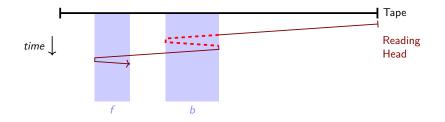


Dynamic program: base case, a = b

 $a = b \implies$ a detour starts at $\ell(b)$

 $n_\ell(b) := \#$ file requests strictly on the left of b

 $T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$

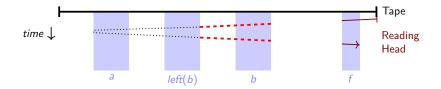


a < b and assume b is skipped

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)] + 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a)) + 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$

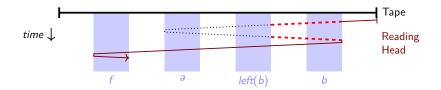
a < b and assume b is skipped

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)] \\ + 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a)) \\ + 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$



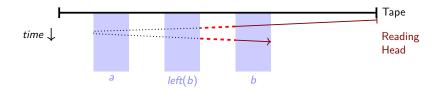
a < b and assume b is skipped

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)] \\ + 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a)) \\ + 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$

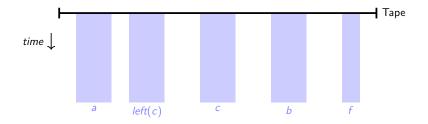


a < b and assume b is skipped

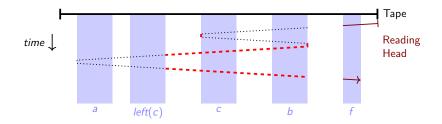
$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)] + 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a)) + 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$



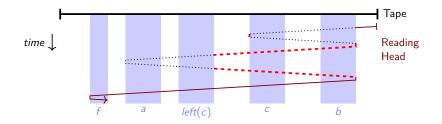
$$detour_c(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}] + 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a)) + 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$



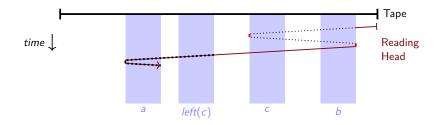
$$detour_{c}(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}] + 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a)) + 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$



$$detour_{c}(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}] + 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a)) + 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$



$$detour_{c}(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}] + 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a)) + 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$



Dynamic program: complete formulation

$$\begin{aligned} skip(a, b, n_{skip}) &:= T[a, left(b), n_{skip} + x(b)] \\ &+ 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a)) \\ &+ 2 \cdot (\ell(b) - r(left(b))) \cdot x(b) \end{aligned}$$

$$\begin{aligned} detour_{c}(a, b, n_{skip}) &:= T[a, left(c), n_{skip}] + T[c, b, n_{skip}] \\ &+ 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a)) \\ &+ 2 \cdot U \cdot (n_{skip} + n_{\ell}(c)) \\ define \ F_{a,b} &:= files \ requested \ between \ a \ and \ b \ excluding \ a \end{aligned}$$

Dynamic program \mathbf{DP} (with a < b)

$$T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$$

$$T[a, b, n_{skip}] = \min \left(skip(a, b, n_{skip}) ; \min_{c \in F_{a,b}} detour_{c}(a, b, n_{skip}) \right)$$

Theorem

DP solves LTSP exactly in time $O(n \cdot n_{req}^3)$.

More dynamic programs

LogDP(λ): DP restricted to detours spanning $\lambda \log n_{req}$ requested files

Reduced complexity in $O(\lambda^2 \cdot n_{req} \cdot n \cdot \log^2(n_{req}))$, tested with $\lambda \in \{1, 5\}$

SIMPLEDP: DP forbidding intertwined (i.e., overlapping) detours

Similar to **DP** but *a* is always f_1 : no need to call $T[b, c, n_{skip}]$ Reduced complexity in $O(n \cdot n_{req}^2)$ **Lemma:** for all U, competitive ratio $\in [\frac{5}{2}, 3]$

Note: dependency in n and not $\log n \longrightarrow$ pseudo-polynomial for high-multiplicity instances (harder problem as in scheduling)

Note2: concurrent similar solution from [CardonhaCireReal'21]

Simulations: overview

Dataset: 2 weeks at CC-IN2P3

- 169 tapes, > 3M files
- focus on reading operations
- filtering steps, data processing (e.g., merge reads on aggregates)
- median data: 150 files requested, 3k requests, 50% file size variation

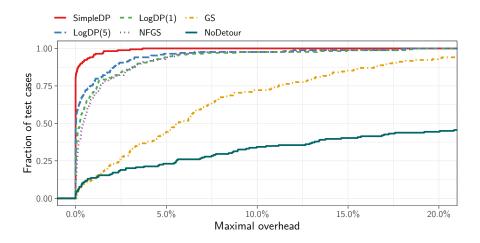
$\mathsf{Code} + \mathsf{dataset} \ (\mathsf{with} \ \mathsf{statistical} \ \mathsf{descriptions}) \ \mathsf{available} \ \mathsf{online}$

Experimental methodology

- choose 3 values for $U: \{0, 0.5, 1\} \times$ average file size reading time
- median time performance (seconds, on a compiled Python program):

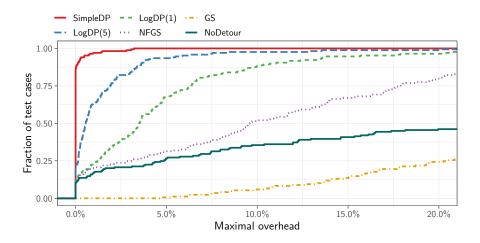
FGS	NFGS	LogDP(1)	SIMPLEDP	LogDP(5)	DP
< 0.1	0.1	0.5	1	7	50

Simulation results, U = 0



Performance profile: best is top-left (most instances with low overhead vs OPT)

Simulation results, U = file



Performance profile: best is top-left (most instances with low overhead vs O_{PT})

Conclusion

https://commons.wikimedia.org/wiki/ File:LTD2-cart-wo-top-shell.jpg

General: tapes are past & future

- tapes stay primordial in some fields (€\$£¥₩) but neglected by CS research
- fundamental problems are still open

On LTSP

- high-multiplicity variant remains open
- huge gap between theoretically studied models and practical heuristics

Perspectives on other tape-related topics

- multi-tape requests: optimize waiting queues
- optimize tape / disk storage ratio

CS Research

some engineering problems are unknown to researchers