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Introduction
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Ø Es9ma9on of the “job wait 9me” in job schedulers is a 
long-standing concern and a challenging task

Ø Machine Learning (ML) and Deep Learning (DL) are 
promising approaches for this task, which learn complex 
correla=ons automa=cally 

Ø Several ac=vi=es were already reported in the FJPPL project 

W.Takase (KEK-CRC)

F.Suter and L.Gombert (CC-IN2P3)

→ We introduce a modern DL technique to efficiently address this task  

Keywords: Graph neural network and explainability



Problem in tradi1onal approaches
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Ø To predict the job wait time with high accuracy, the relation between other already 
running and waiting jobs is important

Ø E.g.) we can expect that the job wait time will be long if many high-priority jobs are already 
waiting in the scheduler

Ø The condition of the scheduler changes dynamically 

Ø However, traditional ML and DL require a “fixed” length of data:

Ø E.g.) the length of input data should be 5

Ø We lose accurate information in a job scheduler  

MulO-layer perceptron (MLP) model

→ We need to design a DL model to handle the variable length of data
→ Graph Neural Networks (GNN) is employed in this study



Graph neural network 
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Ø Data are prepared with a graph structure: https://graphdeeplearning.github.io/post/benchmarking-gnns/

Point: trainable parameters exist only node-wise and edge-wise embedding 
→ Graph Neural Network (GNN) can handle the variable number of nodes and edge very naturally



Datasets
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Ø Experiments are performed using “parallel workloads archive” (open data)

Ø Contains historical job accounting information  

Ø 6 datacenters are selected to examine different 
types of job schedulers 

Ø Datasets are split into training, valida9on, and 
test data with a ra9o of 80%:10%:10%

Ø DL model needs to acquire the capability of the 
predic=on in completely different =me range 

Ø E.g) SDSC_BLUE dataset: 2000-04-30 to 
2002-05-30 is train data, and 2002-08-29 
to 2002-12-30 is test data

https://www.cs.huji.ac.il/labs/parallel/workload/
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Ø Snapshots of the scheduler are reconstructed from the accoun9ng data

Ø 1 snapshot = 1 input data of DL model

The job of interest that 
we aimed at predicting 
the wait time

Overview of the snapshot



Input variables and graph data
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Ø 21 input variables are defined for each job

Ø USER_ID, REQEST_CORE, REQUEST_TIME… etc

Ø E.g.) if there are 10 jobs in the snapshot,  the total number of input variables is 21 x 10 = 210

Ø Graph structure data are prepared from the snapshot 
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# of node attributes = 21Running jobs

Waiting jobs

Finished jobs

Target job

Each node corresponds to each job
→ 21 input variables are assigned to node aVributes

Edges are prepared between the target job and other jobs 
(bi-direcOonal)
→ Job informaOon will be exchanged along with the edges 



Model overview

T.KISHIMOTO 82023/1/31

G
AT

BN

R
eLU

C
oncatenate

Linear

Predict wait time  
class

GAT: Graph attention layer 
BN: Batch normalization layer

Feature module

Block1

(# of jobs, # of input variables) 
= (N, 21) 

(N,64) (N,64) (N,64)

(196) (5)

Inputs

Node

Edge

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

Average 
Pooling

Average 
Pooling

Average 
Pooling

Block2 Block3

(64) (64) (64)

BN

R
eLU

D
ropout

Linear

(64) (64) (64) (64)

Classifier module



Feature module
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Ø Feature module is aimed at extracting global features of 
the snapshot 

Ø Graph Attention Network (GAT) is employed

Ø Importance of the relation between the target job and other 
jobs (attention weight) is learned as edge attribute

Running jobs

Waiting jobs

Finished jobs

Target job

Attention weight

→ Improve the learning efficiency and explainability by 
visualizing the attention weights (will be discussed later) 



Classifier module
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Ø Classifier module is aimed at predicting the wait time classes

Ø Fully connect layer, batch normalization, ReLU, dropout

Ø 5 prediction classes are defined in this study 



Training details 
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Ø Pytorch + DGL libraries are used, our codes are available in GitHub

Ø All executions used a local cluster of NVIDIA A100 graphics cards

Ø 40GB GPU memory for each card  

Ø The training is performed for up to 30 epochs 

Ø The best epoch for the validation data is used as the final weight parameters

Ø Cross-entropy loss is used as loss function, and the SGD algorithm is used as optimizer 

Ø Batch size is 128, and the learning rate is 0.01 

Ø Other hyperparameters (e.g. # of nodes in GAT layer) are optimized by a grid search 

https://github.com/ktomoe/deepbatch


Results: confusion matrix
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HPC2NSDSC_BLUE 

Ø Confusion matrix for the test data

Ø As a global trend, middle range of 
classes is difficult to predict 

→ Consistent with previous study by 
IN2P3 team

Ø Overlearning is main concern to 
improve the performance 



Results: comparison with other methods
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Ø MLP and BDT models are executed and compared with our model

Ø Need to prepare the fixed length of data, N jobs are selected from the snapshot 

→ Our proposed model outperforms tradiOonal methods
→ GNN can process our job informaOon efficiently ☺



Results: attention weights
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Ø Large a^en9on weights 
for recently finished jobs 

→ DL model seems to utilize past 
experiences (?)



Summary
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Ø Proposed an efficient approach based on the GNN

Ø Our model outperforms MLP and BDT models 

Ø Overlearning is a main concern:

Ø Transfer learning is a feasible approach: SiteA → SiteB

Ø The current study was submiced to JSSPP 2023 workshop: hcps://jsspp.org/

Ø Acceptance rate is ~50%

Ø Future plans:

Ø Latency of the predic=on is not studied well yet

Ø FPGA card (ALVEO) has been procured 

Ø KEKCC real accoun=ng informa=on (LSF) will be checked 

https://jsspp.org/


Backups
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Input variables
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Results: confusion matrix
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Results: time dependency
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Results: PFI
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