
An efficient approach based on graph neural
networks for predicting wait time in job schedulers

Tomoe Kishimoto
Compu&ng Research Center, KEK

T.KISHIMOTO (KEK) 12023/1/31

Introduction

T.KISHIMOTO 22023/1/31

Ø Es9ma9on of the “job wait 9me” in job schedulers is a
long-standing concern and a challenging task

Ø Machine Learning (ML) and Deep Learning (DL) are
promising approaches for this task, which learn complex
correla=ons automa=cally

Ø Several ac=vi=es were already reported in the FJPPL project

W.Takase (KEK-CRC)

F.Suter and L.Gombert (CC-IN2P3)

→ We introduce a modern DL technique to efficiently address this task

Keywords: Graph neural network and explainability

Problem in tradi1onal approaches

T.KISHIMOTO 32023/1/31

Ø To predict the job wait time with high accuracy, the relation between other already
running and waiting jobs is important

Ø E.g.) we can expect that the job wait time will be long if many high-priority jobs are already
waiting in the scheduler

Ø The condition of the scheduler changes dynamically

Ø However, traditional ML and DL require a “fixed” length of data:

Ø E.g.) the length of input data should be 5

Ø We lose accurate information in a job scheduler

MulO-layer perceptron (MLP) model

→ We need to design a DL model to handle the variable length of data
→ Graph Neural Networks (GNN) is employed in this study

Graph neural network

T.KISHIMOTO 42023/1/31

Ø Data are prepared with a graph structure: https://graphdeeplearning.github.io/post/benchmarking-gnns/

Point: trainable parameters exist only node-wise and edge-wise embedding
→ Graph Neural Network (GNN) can handle the variable number of nodes and edge very naturally

Datasets

T.KISHIMOTO 52023/1/31

Ø Experiments are performed using “parallel workloads archive” (open data)

Ø Contains historical job accounting information

Ø 6 datacenters are selected to examine different
types of job schedulers

Ø Datasets are split into training, valida9on, and
test data with a ra9o of 80%:10%:10%

Ø DL model needs to acquire the capability of the
predic=on in completely different =me range

Ø E.g) SDSC_BLUE dataset: 2000-04-30 to
2002-05-30 is train data, and 2002-08-29
to 2002-12-30 is test data

https://www.cs.huji.ac.il/labs/parallel/workload/

Target job

Time when the target job was submitted
(reference time)

Waiting Running

Running jobs

Waiting jobs

Finished jobs

Past Future

Snapshots

T.KISHIMOTO 62023/1/31

Ø Snapshots of the scheduler are reconstructed from the accoun9ng data

Ø 1 snapshot = 1 input data of DL model

The job of interest that
we aimed at predicting
the wait time

Overview of the snapshot

Input variables and graph data

T.KISHIMOTO 72023/1/31

Ø 21 input variables are defined for each job

Ø USER_ID, REQEST_CORE, REQUEST_TIME… etc

Ø E.g.) if there are 10 jobs in the snapshot, the total number of input variables is 21 x 10 = 210

Ø Graph structure data are prepared from the snapshot

...

...

...

...

...
...

...

...

...

of node attributes = 21Running jobs

Waiting jobs

Finished jobs

Target job

Each node corresponds to each job
→ 21 input variables are assigned to node aVributes

Edges are prepared between the target job and other jobs
(bi-direcOonal)
→ Job informaOon will be exchanged along with the edges

Model overview

T.KISHIMOTO 82023/1/31

G
AT

BN

R
eLU

C
oncatenate

Linear

Predict wait time
class

GAT: Graph attention layer
BN: Batch normalization layer

Feature module

Block1

(# of jobs, # of input variables)
= (N, 21)

(N,64) (N,64) (N,64)

(196) (5)

Inputs

Node

Edge

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

Average
Pooling

Average
Pooling

Average
Pooling

Block2 Block3

(64) (64) (64)

BN

R
eLU

D
ropout

Linear

(64) (64) (64) (64)

Classifier module

Feature module

T.KISHIMOTO 92023/1/31

G
AT

BN

R
eLU

C
oncatenate

Linear

Predict wait time
class

GAT: Graph attention layer
BN: Batch normalization layer

Feature module

Block1

(# of jobs, # of input variables)
= (N, 21)

(N,64) (N,64) (N,64)

(196) (5)

Inputs

Node

Edge

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

Average
Pooling

Average
Pooling

Average
Pooling

Block2 Block3

(64) (64) (64)

BN

R
eLU

D
ropout

Linear

(64) (64) (64) (64)

Classifier module

Ø Feature module is aimed at extracting global features of
the snapshot

Ø Graph Attention Network (GAT) is employed

Ø Importance of the relation between the target job and other
jobs (attention weight) is learned as edge attribute

Running jobs

Waiting jobs

Finished jobs

Target job

Attention weight

→ Improve the learning efficiency and explainability by
visualizing the attention weights (will be discussed later)

Classifier module

T.KISHIMOTO 102023/1/31

G
AT

BN

R
eLU

C
oncatenate

Linear

Predict wait time
class

GAT: Graph attention layer
BN: Batch normalization layer

Feature module

Block1

(# of jobs, # of input variables)
= (N, 21)

(N,64) (N,64) (N,64)

(196) (5)

Inputs

Node

Edge

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

G
AT

BN

R
eLU

(N,64) (N,64) (N,64)

Average
Pooling

Average
Pooling

Average
Pooling

Block2 Block3

(64) (64) (64)

BN

R
eLU

D
ropout

Linear

(64) (64) (64) (64)

Classifier module

Ø Classifier module is aimed at predicting the wait time classes

Ø Fully connect layer, batch normalization, ReLU, dropout

Ø 5 prediction classes are defined in this study

Training details

T.KISHIMOTO 112023/1/31

Ø Pytorch + DGL libraries are used, our codes are available in GitHub

Ø All executions used a local cluster of NVIDIA A100 graphics cards

Ø 40GB GPU memory for each card

Ø The training is performed for up to 30 epochs

Ø The best epoch for the validation data is used as the final weight parameters

Ø Cross-entropy loss is used as loss function, and the SGD algorithm is used as optimizer

Ø Batch size is 128, and the learning rate is 0.01

Ø Other hyperparameters (e.g. # of nodes in GAT layer) are optimized by a grid search

https://github.com/ktomoe/deepbatch

Results: confusion matrix

T.KISHIMOTO 122023/1/31

HPC2NSDSC_BLUE

Ø Confusion matrix for the test data

Ø As a global trend, middle range of
classes is difficult to predict

→ Consistent with previous study by
IN2P3 team

Ø Overlearning is main concern to
improve the performance

Results: comparison with other methods

T.KISHIMOTO 132023/1/31

Ø MLP and BDT models are executed and compared with our model

Ø Need to prepare the fixed length of data, N jobs are selected from the snapshot

→ Our proposed model outperforms tradiOonal methods
→ GNN can process our job informaOon efficiently ☺

Results: attention weights

T.KISHIMOTO 142023/1/31

Ø Large a^en9on weights
for recently finished jobs

→ DL model seems to utilize past
experiences (?)

Summary

T.KISHIMOTO 152023/1/31

Ø Proposed an efficient approach based on the GNN

Ø Our model outperforms MLP and BDT models

Ø Overlearning is a main concern:

Ø Transfer learning is a feasible approach: SiteA → SiteB

Ø The current study was submiced to JSSPP 2023 workshop: hcps://jsspp.org/

Ø Acceptance rate is ~50%

Ø Future plans:

Ø Latency of the predic=on is not studied well yet

Ø FPGA card (ALVEO) has been procured

Ø KEKCC real accoun=ng informa=on (LSF) will be checked

https://jsspp.org/

Backups

T.KISHIMOTO 162023/1/31

Input variables

T.KISHIMOTO 172023/1/31

Results: confusion matrix

T.KISHIMOTO 182023/1/31

ANL_Intrepid PIK_IPLEX RICC CEA_CURIE

Results: time dependency

T.KISHIMOTO 192023/1/31

Results: PFI

T.KISHIMOTO 202023/1/31

