An efficient approach based on graph neural networks for predicting wait time in job schedulers

Tomoe Kishimoto

Computing Research Center, KEK

T.KISHIMOTO (KEK)

2023/1/31

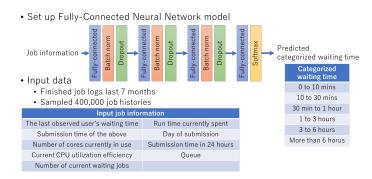
Introduction

KISHIMOTO

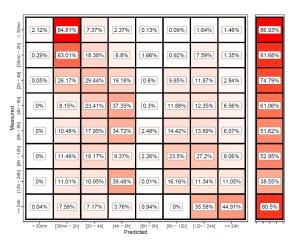
- Estimation of the "job wait time" in job schedulers is a long-standing concern and a challenging task
 - Machine Learning (ML) and Deep Learning (DL) are promising approaches for this task, which learn complex correlations automatically
 - > Several activities were already reported in the FJPPL project
- \rightarrow We introduce a modern DL technique to efficiently address this task

Keywords: Graph neural network and explainability

W.Takase (KEK-CRC)



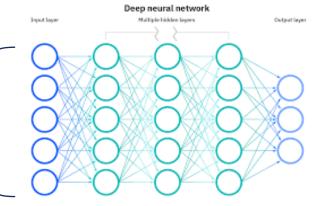
F.Suter and L.Gombert (CC-IN2P3)



Problem in traditional approaches

- To predict the job wait time with high accuracy, the relation between other already running and waiting jobs is important
 - > E.g.) we can expect that the job wait time will be long if many high-priority jobs are already waiting in the scheduler
 - > The condition of the scheduler changes dynamically
- > However, traditional ML and DL require a "fixed" length of data:
 - E.g.) the length of input data should be 5
 - > We lose accurate information in a job scheduler
 - \rightarrow We need to design a DL model to handle the variable length of data
 - \rightarrow Graph Neural Networks (GNN) is employed in this study

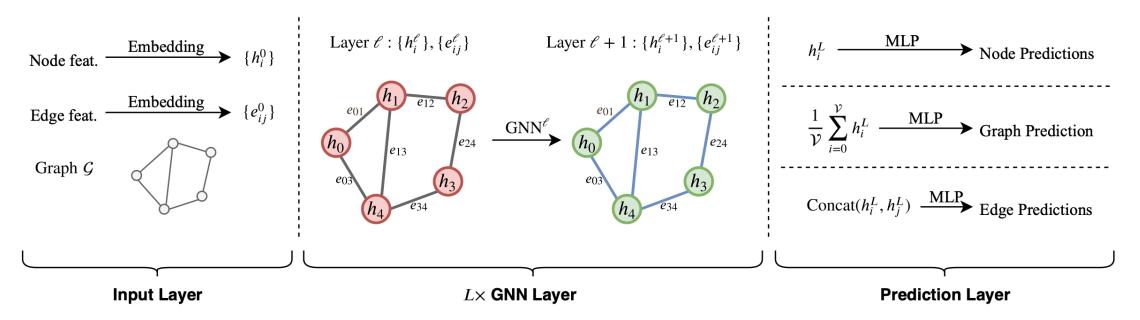
Multi-layer perceptron (MLP) model



Graph neural network

> Data are prepared with a graph structure:

https://graphdeeplearning.github.io/post/benchmarking-gnns/



Point: trainable parameters exist only node-wise and edge-wise embedding → Graph Neural Network (GNN) can handle the variable number of nodes and edge very naturally

Datasets

> Experiments are performed using "parallel workloads archive" (open data)

> Contains historical job accounting information

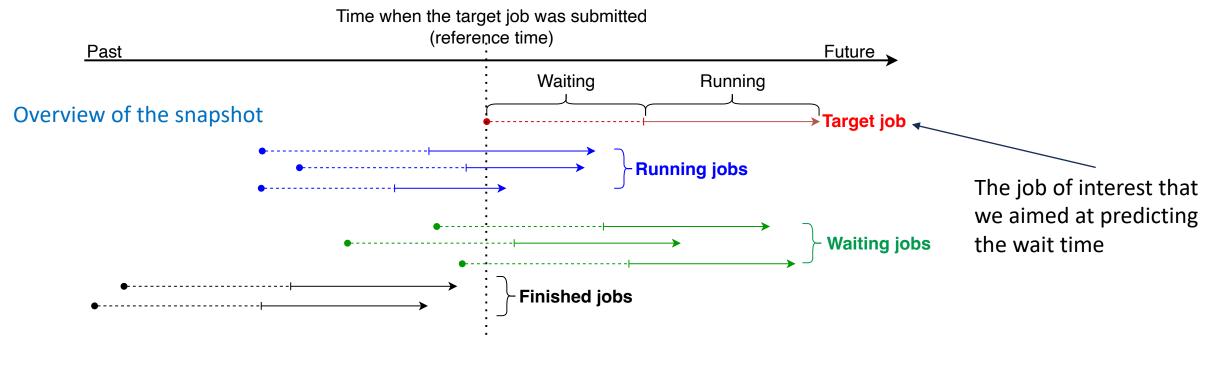
Name	Job scheduler	Training data	Validation data	Test data
	Catalina [1]	186,050	$23,\!256$	23,256
SDSC_BLUE		[2000–04–30 to	[2002–05–30 to	[2002–08–29 to
—		2002-05-30]	2002–08–29]	2002 - 12 - 30]
	Maui [4]	162,297	20,287	20,287
HPC2N		[2002–08–01 to	[2005–04–13 to	[2005–06–13 to
		2005 - 04 - 13]	2005-06-13]	2006 - 01 - 16]
	Cobalt [2]	$55,\!150$	6,893	6,893
ANL_Intrepid		[2009–01–05 to	[2009–07–08 to	[2009-08-05 to
_		2009-07-08]	2009-08-05]	2002 - 09 - 01]
	LoadLeveler	583.097	72,887	72,887
PIK_IPLEX		[2009–04–09 to	[2012–02–06 to	[2012-04-25 to]
		2012 - 02 - 06]	2012 - 04 - 25	2012 - 07 - 31
	Custom-built	$358,\!236$	44,779	44,779
RICC		[2010–04–30 to	[2010–09–13 to	[2010–09–18 to
		2010-09-13]	2010 - 09 - 18	2010 - 09 - 30
	SLURM	$250,\!262$	$31,\!282$	31,282
CEA_CURIE		[2012–02–02 to	[2012–09–15 to	[2012-10-02 to
		2012 - 09 - 15]	2012 - 10 - 02	2012 - 10 - 13

- 6 datacenters are selected to examine different types of job schedulers
- Datasets are split into training, validation, and test data with a ratio of 80%:10%:10%
 - DL model needs to acquire the capability of the prediction in completely different time range
 - E.g) SDSC_BLUE dataset: 2000-04-30 to 2002-05-30 is train data, and 2002-08-29 to 2002-12-30 is test data

Snapshots

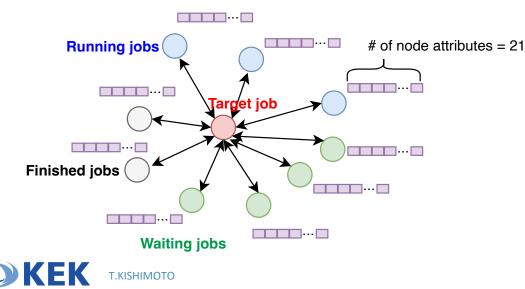
> Snapshots of the scheduler are reconstructed from the accounting data

1 snapshot = 1 input data of DL model



Input variables and graph data

- > 21 input variables are defined for each job
 - USER_ID, REQEST_CORE, REQUEST_TIME... etc
 - > E.g.) if there are 10 jobs in the snapshot, the total number of input variables is 21 x 10 = 210
- Graph structure data are prepared from the snapshot



Each node corresponds to each job \rightarrow 21 input variables are assigned to node attributes

Edges are prepared between the target job and other jobs (bi-directional)

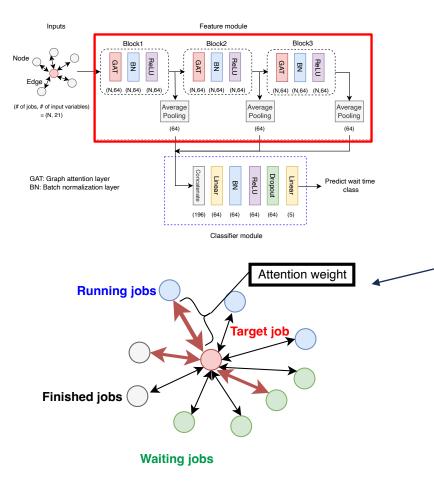
ightarrow Job information will be exchanged along with the edges

Model overview



2023/1/31

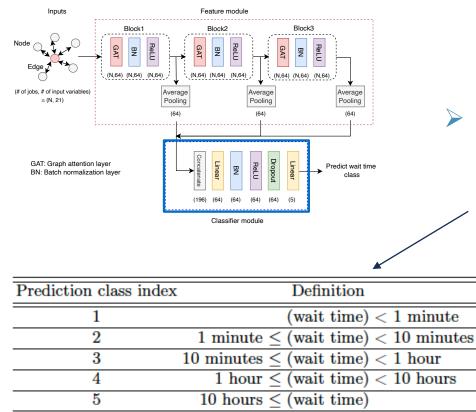
Feature module



- Feature module is aimed at extracting global features of the snapshot
- Graph Attention Network (GAT) is employed
 - Importance of the relation between the target job and other
 jobs (attention weight) is learned as edge attribute

 \rightarrow Improve the learning efficiency and explainability by visualizing the attention weights (will be discussed later)

Classifier module



> Classifier module is aimed at predicting the wait time classes

- Fully connect layer, batch normalization, ReLU, dropout
 - 5 prediction classes are defined in this study

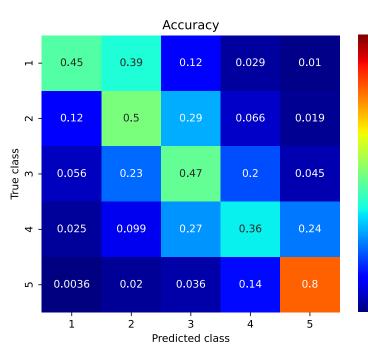
Training details

- > Pytorch + DGL libraries are used, our codes are available in <u>GitHub</u>
- > All executions used a local cluster of NVIDIA A100 graphics cards
 - 40GB GPU memory for each card

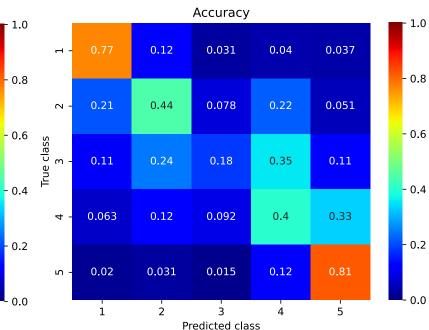
- > The training is performed for up to 30 epochs
 - > The best epoch for the validation data is used as the final weight parameters
 - > Cross-entropy loss is used as loss function, and the SGD algorithm is used as optimizer
 - > Batch size is 128, and the learning rate is 0.01
 - > Other hyperparameters (e.g. # of nodes in GAT layer) are optimized by a grid search

Results: confusion matrix

SDSC_BLUE



HPC2N



Confusion matrix for the test data

- As a global trend, middle range of classes is difficult to predict
 - \rightarrow Consistent with previous study by IN2P3 team
- Overlearning is main concern to improve the performance

Results: comparison with other methods

MLP and BDT models are executed and compared with our model

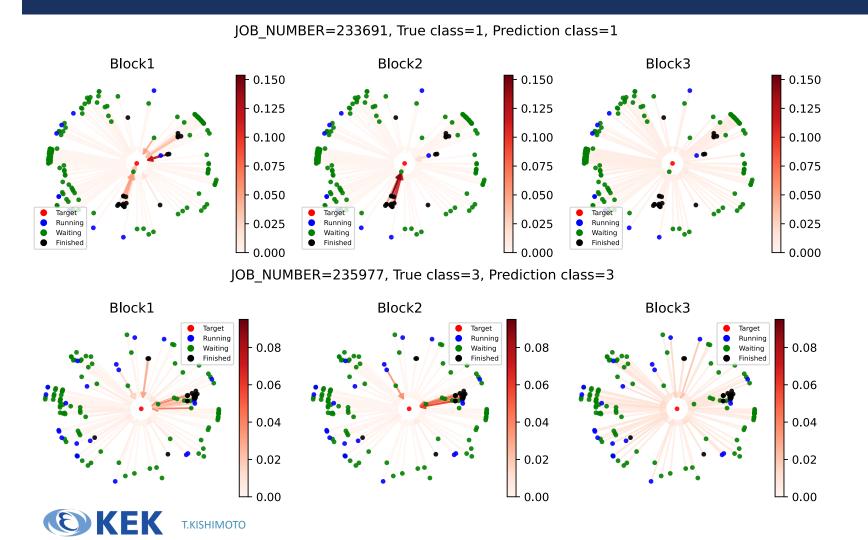
> Need to prepare the fixed length of data, N jobs are selected from the snapshot

Dataset	Our model	MLP		BDT	
		N=150	N=300	N=150	N=300
SDSC_BLUE	$\textbf{0.517} \pm \textbf{0.016}$	0.447 ± 0.012	0.446 ± 0.010	0.422 ± 0.017	0.418 ± 0.012
HPC2N	$\textbf{0.522} \pm \textbf{0.024}$	0.457 ± 0.022	0.398 ± 0.010	0.421 ± 0.024	0.382 ± 0.020
ANL_Intrepid	$\textbf{0.470} \pm \textbf{0.020}$	0.381 ± 0.028	0.388 ± 0.037	0.408 ± 0.018	0.408 ± 0.020
PIK_IPLEX	$\textbf{0.322} \pm \textbf{0.029}$	0.307 ± 0.028	0.240 ± 0.026	0.262 ± 0.016	0.242 ± 0.024
RICC	$\textbf{0.457} \pm \textbf{0.026}$	0.371 ± 0.028	0.373 ± 0.042	0.321 ± 0.035	0.332 ± 0.027
CEA_CURIE	$\textbf{0.555} \pm \textbf{0.030}$	0.324 ± 0.030	0.311 ± 0.023	0.383 ± 0.017	0.365 ± 0.019

 \rightarrow Our proposed model outperforms traditional methods

 \rightarrow GNN can process our job information efficiently $\textcircled{\sc op}$

Results: attention weights



Large attention weights for recently finished jobs

→ DL model seems to utilize past experiences (?)

Summary

- Proposed an efficient approach based on the GNN
 - > Our model outperforms MLP and BDT models
 - > Overlearning is a main concern:
 - \succ Transfer learning is a feasible approach: SiteA → SiteB
 - The current study was submitted to JSSPP 2023 workshop: <u>https://jsspp.org/</u>
 - Acceptance rate is ~50%
- Future plans:
 - > Latency of the prediction is not studied well yet
 - > FPGA card (ALVEO) has been procured
 - > KEKCC real accounting information (LSF) will be checked

Backups

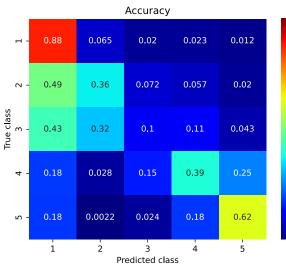
Input variables

ID	Name	Description
1.	JOB_NUMBER*	A job identifier indicated by an integer.
2.	SUBMIT_TIME	The difference between the job's submission time
		and the reference time, in seconds.
3.	WAIT_TIME	The running and finished jobs: the difference be-
		tween the job's submission time and the start time,
		in seconds. The waiting jobs: the difference between
		the job's submission time and the reference time, in
		seconds. The target job: 0 is filled because this is
		the value in interest.
4.	RUN_TIME	The finished jobs: the wall clock time of the job, in
		seconds. The running jobs: the difference between
		the job's start time and the reference time, in sec-
		onds. The waiting jobs and the target job: 0 is filled.
5.	$ALLOCATE_CORE^*$	The number of allocated processors.
6.	$REQUEST_CORE^*$	The number of requested processors.
7.	$REQUEST_TIME^*$	The requested time in seconds.
8.	$REQUEST_MEMORY^*$	The requested memory size in KB.
9.	STATUS	The target job: 0 is filled. The running jobs: 1 is
		filled. The waiting jobs: 2 is filled. The finished jobs:
		the original value from the standard workload for-
		$\mathrm{mat}+3 \mathrm{~is~filled}.$
10.	$USER_ID^*$	A user identifier indicated by an integer.

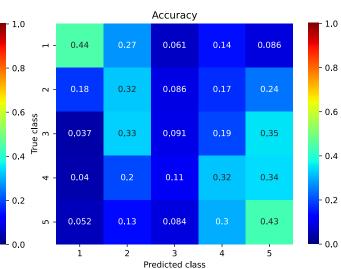
	_	
11.	$GROUP_ID^*$	A group identifier indicated by an integer.
12.	APPLICATION_NUMBER*	An application identifier indicated by an integer.
		This might represents a script file used to run jobs.
13.	$QUEUE_NUMBER^*$	A queue identifier indicated by an integer.
14.	PARTITION_NUMBER*	A partition identifier indicated by an integer.
15.	SUBMIT_WEEKDAY	A weekday identifier $[0, \dots, 6]$ when the job was sub-
		mitted.
16.	SUBMIT_HOUR	Hour $[0, \dots, 23]$ when the job was submitted.
17.	WAIT_JOB	The number of waiting jobs in the queue at the ref-
		erence time.
18.	RUN_JOB	The number of running jobs in the queue at the
		reference time.
19.	WAIT_CORE	The total number of requested cores of the waiting
		jobs in the queue at the reference time.
20.	RUN_CORE	The total number of requested cores of the running
		jobs in the queue at the reference time.
21.	USER_TIME	A total CPU time consumed by the user during the
		last 5 days from the reference time.

Results: confusion matrix

ANL_Intrepid



PIK_IPLEX



RICC

Accuracy

0.5

0.47

0.07

3

Predicted class

0,023

0.13

0.54

0.45

4

5

- -

∩ -

True class 3

4 -

<u>ں</u> -

0.71

0,18

0.029

0.0012

1

0,029

0.11

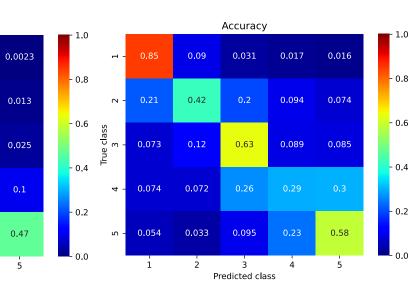
0,074

0,028

0.014

2

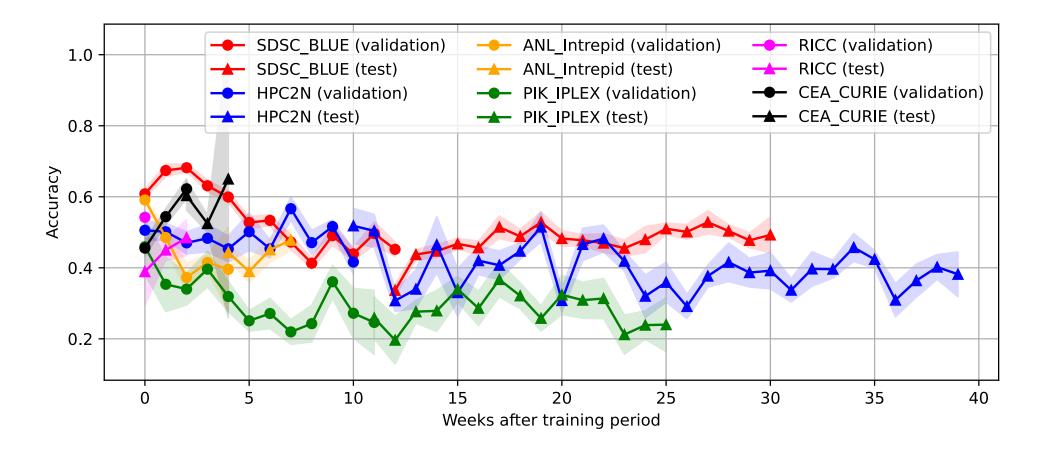
CEA_CURIE



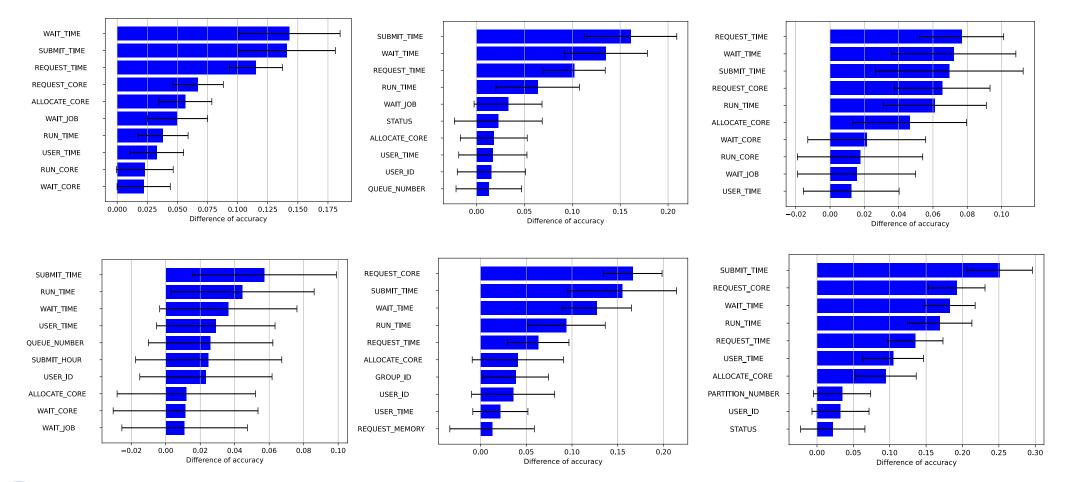
T.KISHIMOTO

2023/1/31

Results: time dependency



Results: PFI



КЕК т.кізнімото