

		P&i	Faculté				
de physique et ingénierie							
	Université de Strasbourg						

Prototyping and Data Analysis of the 65 nm CMOS Sensor for High Energy Physics

Presented by: Hasan SHAMAS

Supervisors: Ziad EL BITAR and Auguste BESSON

June 22, 2023

OUTLINE

Tracking and Vertexing

Introduction () Objectives Materials and Methods Results and Discussion

Conclusions (•)

Why silicon ?

Objectives
Materials and Methods
Results and Discussion

Introduction

Conclusions 🔘

 $((\bullet)$

ALICE ITS upgrade

Objectives

Materials and Methods 🔘 Results and Discussion

Conclusions 💽

CE65 design

Thickness: 50 μm Rolling shutter readout Integration time: 200 μs (@10 MHz clock) Signal digitized outside the chip **Three sub-matrices: AC** coupled amplifier [Amp (AC)] **DC** coupled amplifier [Amp (DC)] **SF** source-follower [SF]

Introduction

VRESET VDD33 SF pixel VDD12 Simplest approach Direct estimation of the input node voltage - SELROW DC AMP Input voltage determined VDD33 by the supply voltage Signal gain: 5 times VDD12 AC AMP Ð Sensing node depletion voltage can be applied SELROW independently and go over the supply voltage Slightly reduced gain compared to DC

Objectives O Materials and Methods 💽 Results and Discussion

onclusions (•)

CE65 variants

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu \mathrm{m}$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_gap	$15 \mu \mathrm{m}$	64×32	AC/21, DC/21, SF/22
CE65-C	\mod	$15 \mu \mathrm{m}$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu \mathrm{m}$	48×32	AC/16, DC/16, SF/16

Objectives
Materials and Methods
Results and Discussion

Introduction

Conclusions (•)

Experimental setup

Objectives
Materials and Methods
Results and Discussion

Introduction

Conclusions (\bullet)

Analysis flow

Reconstruction chain

Main Configuration file

Tracking: spatial cut at 100 μ m,100 μ m for reference, 50 μ m,50 μ m and $\chi^2/ndf < 1$ for DUT association

Clustering: Set 2 Thresholds and calculate position by center of gravity for 3x3 window

SF: seeding charge > 150 ADCu , SNR>3

Introduction

AC/DC: seeding charge > 500 ADCu, SNR>3

Edge: drop track with interception at **2 pixels** to DUT edge.

Seeding method: multi (probability of having more then one cluster per track)

Geometry file

position, number of pixels, spatial and time resolution for each detector Region of interest Calibration file

Objectives
Materials and Methods
Results and Discussion

Cluster charge

Objectives
Materials and Methods

Introduction

12

Results and Discussion (()) Conclusions ()

Seed charge

Expected : C(mod) a little bit closer to the MPV

Less charge sharing than A(std)

Introduction

Objectives
Materials and Methods

Results and Discussion

Charge sharing

Introduction

3 pixels contain all cluster charge

Seed pixel: contain around 80% in average

6 pixels contain all cluster charge

Results and Discussion

ionclusions (•)

Seed pixel: contain around 50% in average

Residual

Results and Discussion

Objectives
Materials and Methods

Introduction

15

Conclusions (•)

Efficiency

Conclusions & Perspectives

Take Home Messages

- Cluster charge is not affected by the pixel doping process or the electronics architecture
- ✓ charge sharing reduce efficiency

Introduction

All cluster charge is mostly collected by a single pixel in the modified process

- Implementing η corrections to cluster positions. These corrections can help compensate for non-linear charge sharing effects
- 2. Analyze larger pixel sizes, like the D chip $(25 \ \mu m)$
- 3. Investigate more on the efficiency observed for C chip

Objectives
Materials and Methods

Results and Discussion

Thank You For Your Attention