Investigating strategies to minimize normal tissue complications in head and neck patients treated with protons

Under the supervision of Dr. Chiara La Tessa Miller School of Medicine University of Miami

INTRODUCTION - CANCER

Cells

INTRODUCTION - CANCER

INTRODUCTION - CANCER

Advantages of radiotherapy		Disadvantages of radiotherapy	
•	Non-invasive	•	Lower effectiveness for
•	Highly effective for most		large tumors
	cancers	•	Damage to surrounding
•	Painless		healthy tissues (side
			effects)

Physical dose $D = \frac{dE}{dm}$ [Gy=J/kg]

Linear energy transfer $LET = \frac{dE}{dx} [\text{keV/}\mu\text{m}]$

Advantages of radiotherapy		Disadvantages of radiotherapy	
•	Non-invasive	•	Lower effectiveness for
•	Highly effective for most		large tumors
	cancers	•	Damage to surrounding
•	Painless		healthy tissues (side
			effects)

Advantages of radiotherapy		Disadvantages of radiotherapy	
•	Non-invasive Highly effective for most	•	Lower effectiveness for large tumors
	cancers	•	Damage to surrounding
•	Painless		healthy tissues (side effects)

Physical dose $D = \frac{dE}{dm}$ [Gy=J/kg]

Linear energy transfer $LET = \frac{dE}{dx}$ [keV/µm]

M. Krämer and al., Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality : Medical Physics, 43(4) :1995–2004, Mar. 2016. ISSN 00942405

DEFINITIONS - SURVIVAL

DEFINITIONS - SURVIVAL

Linear quadratic model : Survival fraction = $e^{-\alpha D - \beta D^2}$

Radiation

DEFINITIONS - SURVIVAL

Linear quadratic model : Survival fraction = $e^{-\alpha D - \beta D^2}$

DEFINITIONS - SURVIVAL & RBE

CONVENTION : fixed RBE of 1.1 for protons

REALITY : variable RBE, higher than 1.1 out of field for protons

CONVENTION : fixed RBE of 1.1 for protons

REALITY : variable RBE, higher than 1.1 out of field for protons

RBE depends on dose, LET, biological parameters, radiation...

CONVENTION : fixed RBE of 1.1 for protons

REALITY : variable RBE, higher than 1.1 out of field for protons

RBE depends on dose, LET, biological parameters, radiation...

What RBE models can be used ?

McNamara model :

Phenomenological model that predicts proton RBE

McNamara model :

Phenomenological model that predicts proton RBE

McNamara model :

Phenomenological model that predicts proton RBE

Advantages	Disadvantages	
 Easy and fast to compute Depends on physical dose, LET and α/β ratio 	 Unreliable out of field because LET is calculated from protons and not other secondary particles Based on <i>in vitro</i> data 	

Microdosimetry : Specific energy

Lineal energy

=Z

- **Energy deposited** 3
- Volume m
- Energy of a single radiation ε_I
- Ī Mean chord length of the volume

Stochastic Microdosimetric Kinetic Model (SMKM) :

Microdosimetric model that predicts cell survival

Stochastic Microdosimetric Kinetic Model (SMKM) :

Microdosimetric model that predicts cell survival

Specific energy $z = \frac{\epsilon}{m}$

8

DEFINITIONS - RBE

Stochastic Microdosimetric Kinetic Model (SMKM):

 ϵ

Microdosimetric model that predicts cell survival

Specific energy
$$z = \frac{\epsilon}{m}$$

Advantages Disadvantages Based on microdosimetry so more accurate Based on microdosimetry so longer to ٠ Depends on physical dose, specific energies compute • absorbed by the nucleus and subnuclear Based on *in vitro* data • domain Depends on α and β •

Oral Mucositis : inflammation and ulcers in the oral cavity

For **Head and Neck** patients treated with **proton therapy** : 30% to 60% risk of developing oral mucositis

Oral Mucositis : inflammation and ulcers in the oral cavity

For **Head and Neck** patients treated with **proton therapy** : 30% to 60% risk of developing oral mucositis

What are the physical processes that lead to the development of oral mucositis in head and neck patients treated with protons ? How can they be used to optimize the treatment plans and reduce the side effects ?

- **Eclipse** : Clinical treatment planning software, contains the geometry of the treatment, the dose, the CT scans
- **TOPAS** : Toolkit based on Geant4, used for Monte Carlo simulations of radiation-matter interactions, dedicated to medical physicists, can create the geometry from the CT scans of the patients
- Machine learning : Classification algorithm used to make predictions and study the correlation between the parameters and the occurrence of side effects, decision based on Random Forest

Contribution : 3D treatment planning system – Varian Eclipse for proton therapy planning; N.Sahoo, F.Poenisch, X.Zhang, Y.Li, M.Lii, A.Gautam, R.Wu, M.Gilin, X.Zhu; Physics, Medecine

- Monte Carlo simulations
- Based on Geant4

RESULTS - TOPAS VALIDATION

Dose-Volume Histogram DVH

with the dose extracted from Eclipse and simulated by TOPAS,

for the tumor (CTV) and oral cavity (OC)

RESULTS - TOPAS VALIDATION

Dose-Volume Histogram DVH

with the dose extracted from Eclipse and simulated by TOPAS, for the tumor (CTV) and oral cavity (OC)

- TOPAS is based on Monte Carlo and Eclipse is analytical
- Small difference in values but the trend is similar enough to trust the future simulations

RESULTS - LET

RESULTS - LET

RESULTS - RBE

McNamara RBE map

RESULTS - RBE

RBE-Volume Histogram RBE-VH

calculated with McNamara and SMKM, in the tumor (CTV) and the oral cavity (OC)

RESULTS - RBE

RBE-Volume Histogram RBE-VH

calculated with McNamara and SMKM, in the tumor (CTV) and the oral cavity (OC)

- Higher values of RBE with SMKM than with McNamara
- Higher RBE leads to a higher dose deposited in the organs
- But which model is correct and what is the real RBE in the oral cavity ?

RESULTS - RELATIVE RBE

RBE-VH calculated with McNamara and SMKM, in the tumor (CTV) and the oral cavity (OC), in absolute values

RESULTS - RELATIVE RBE

RBE-VH calculated with McNamara and SMKM, in the tumor (CTV) and the oral cavity (OC), in absolute values

RESULTS - RELATIVE RBE

RBE-VH calculated with McNamara and SMKM, in the tumor (CTV) and the oral cavity (OC), in absolute values

RBE-VH calculated with McNamara and SMKM, in the tumor (CTV) and the oral cavity (OC), in relative values

RESULTS – BIOLOGICAL DOSE

DVH for the 3 RBE models, in the tumor (CTV) and the oral cavity (OC), in relative values

- Dose increases in oral cavity with variable RBE
- RBE of 1.1 might be correct for the tumor but not the oral cavity
- However, this is an average dose for the whole organ, what is the dose is a smaller volume ?

Equivalent Uniform Dose

$$EUD = \left(\sum_{i} v_i D_i^{\frac{1}{n}}\right)^n$$

- v_i Relative volume
- D_i Dose given to the volume
- n Volume effect

Equivalent Uniform Dose

$$EUD = \left(\sum_{i} v_{i} D_{i}^{\frac{1}{n}}\right)^{n}$$

- v_i Relative volume
- D_i Dose given to the volume
- n Volume effect

Table of EUD [Gy] values for the sectors of interest with the 3 RBE models

	EUD [Gy] (RBE 1.1)	EUD [Gy] (Relative RBE McNamara)	EUD [Gy] (Relative RBE SMKM)
TRP	4.77	7.80 ± 0.16	10.58 ± 0.21
BRP	13.89	19.22 ± 0.38	22.76 <u>+</u> 0.46

Equivalent Uniform Dose

$$EUD = \left(\sum_{i} v_{i} D_{i}^{\frac{1}{n}}\right)^{n}$$

- v_i Relative volume
- D_i Dose given to the volume
- n Volume effect

Table of EUD [Gy] values for the sectors of interest with the 3 RBE models

	EUD [Gy] (RBE 1.1)	EUD [Gy] (Relative RBE McNamara)	EUD [Gy] (Relative RBE SMKM)
TRP	4.77	7.80 ± 0.16	10.58 ± 0.21
BRP	13.89	19.22 ± 0.38	22.76 <u>+</u> 0.46

Factor of 1.4 to 2.2 between EUD (RBE 1.1) and EUD (variable RBE) Delivered biological dose underestimated with the fixed RBE convention

• Constant RBE in normal tissues is incorrect

• Underestimation of the dose deposited in the normal tissues when considering a constant RBE

• Assessing correct RBE requires pre-clinical and clinical data (in vivo)

Constant RBE in normal tissues is incorrect

• Underestimation of the dose deposited in the normal tissues when considering a constant RBE

• Assessing correct RBE requires pre-clinical and clinical data (in vivo)

PERSPECTIVES

- Repeat the same analysis on more patients
- Construct a probability model to develop oral mucositis with proton therapy
- Compare with existing model for photon therapy
- Use machine learning to find correlations between the parameters and determine which one influence the most the occurrence and severity of oral mucositis

- [1] Aimee L McNamara, Jan Schuemann, and Harald Paganetti. A phenomenological relative biological effectiveness (rbe) model for proton therapy based on all published in vitro cell survival data. Physics in Medicine & Biology, 60(21):8399, oct 2015
- [2] T Inaniwa and N Kanematsu. Adaptation of stochastic microdosimetric kinetic model for charged-particle therapy treatment planning. Physics in Medicine & Biology, 63(9):095011, may 2018

BACK UP - MCNAMARA RBE

McNamara RBE :

$$RBE = \frac{1}{2D_p} \left(\sqrt{\left(\frac{\alpha}{\beta}\right)^2_x + 4D_p \left(\frac{\alpha}{\beta}\right)_x \left(0,999064 + \frac{0,35605}{\left(\frac{\alpha}{\beta}\right)_x} LET_d\right) + 4D_p^2 \left(1,1012 - 0,0038703 \sqrt{\left(\frac{\alpha}{\beta}\right)_x} LET_d\right)^2 - \left(\frac{\alpha}{\beta}\right)_x \right)^2 \right)$$

Aimee L McNamara, Jan Schuemann, and Harald Paganetti. A phenomenological relative biological effectiveness (rbe) model for proton therapy based on all published in vitro cell survival data. Physics in Medicine & Biology, 60(21):8399, oct 2015

BACK UP - SMKM RBE

Stochastic Microdosimetric Kinetic Model (SMKM) :

$$S = \exp(-\alpha_{SMKM}D - \beta_{SMKM}D^2) \left(1 + D\left[-\beta_{SMKM} + \frac{1}{2}(\alpha_{SMKM} + 2\beta_{SMKM}D)^2\right]z_{n,D}\right)$$

With $\alpha_{SMKM} = \alpha_0 + z_{d,D}^* \beta_0$ and $\beta_{SMKM} = \beta_0 \left(\frac{z_{d,D}^*}{z_{d,D}} \right)$

$$RBE = \frac{-\alpha_X + \sqrt{\alpha_X^2 - 4\beta_X S}}{2\beta_X D}$$

T Inaniwa and N Kanematsu. Adaptation of stochastic microdosimetric kinetic model for chargedparticle therapy treatment planning. Physics in Medicine & Biology, 63(9):095011, may 2018

BACK UP - LIST OF PATIENTS

Total number of patients : 67

	Number of Patients	Fraction
No mucositis	36	54%
Grade 1	15	22%
Grade 2	9	13%
Grade 3	7	11%
Chemotherapy	25	37%
Men	44	66%
Women	19	28%
Unknown	4	6%

Target areas : Base skull, Base tongue, Buccal, Larynx, Mastoid, Nasal, Nasopharynx, Neck, Orbit, Oropharynx, Palate, Parotid, Salivary glands, Tongue, Tonsil

Normal Tissue Complication Probability

$$EUD = \left(\sum_{i} v_i D_i^{\frac{1}{n}}\right)^n \qquad t = \frac{EUD - TD_{50}}{m \times TD_{50}} \qquad NTCP = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{x^2}{2}} dx$$

TD₅₀ Dose tolerance associated with 50% complication riskm Slope of the modeling at TD₅₀

Normal Tissue Complication Probability

BACK UP - MACHINE LEARNING

- Train with Leave One Out method :
 - Train on the whole data set minus one row
 - Test on that single row
 - Repeat on the whole data set, each row is tested
- Classification based on Random Forest
- Get receiver operating characteristic (ROC) curve that gives the performance of the classification
- Get Variable Importance Plot (VIP) that gives the importance of each variable in the classification process

