

Master Science, Mention Physique Spécialité Physique Subatomique et Astroparticules

Année universitaire 2022-2023

Toni NOLOT

Moduli spaces of 3d $\mathcal{N}=4$ theories

Présentation du stage de Master sous la direction de Joannis Lavdas

27 Février 2023 au 28 Juillet 2023

Introduction

Introduction

- Study of a particular class of supersymmetric quantum field theories: $3d \mathcal{N} = 4$ linear quiver gauge theories.
- lacktriangle Emerging as dimensional reduction of the 4d $\mathcal{N}=4$ super Yang-Mills theories.
- Play a very important role in the study of four dimensional quantum gravity.
- Flowing to super conformal fixed points at low energy.
- However, strongly coupled at low energy.
- Thus, no perturbative study possible in the IR.
- Fortunately, some specific configurations in Type-IIB String Theory can describe them in the IR.

TABLE OF CONTENTS

Introduction	2
1. Theoretical context	5
1.1. String Theory, Supersymmetries and Field Theories	6
1.2. Type-IIB String Theory	11
1.3. 3d $\mathcal{N}=4$ Quiver theories	12
1.4. Brane realization of 3d $\mathcal{N}=$ 4 Quiver theories	15
2. Study of the 3d $\mathcal{N}=$ 4 theories	20
2.1. The different Brane configurations	21
2.2. Mirror symmetry	24
2.3. The Moduli space	33
Conclusion	52
Perspectives	54
Appendices	55
Bibliography	59

1. Theoretical context

1.1. String Theory, Supersymmetries and Field Theories

String Theory:

- Particles described by string modes.
- The 2 coordinates of the worldsheet are embedded in the space-time.

Figure 1: The worldsheet of a closed string

Figure 2: The worldsheet of an open string

1.1. String Theory, Supersymmetries and Field Theories

Dp-branes:

- Different boundary conditions at the end points of the open string:

 - $\delta X^{\mu} = 0$: Dirichlet boundary conditions. Constant position in space along this coordinate.

Figure 3: Boundary conditions of an open string

Toni Nolot

Figure 4: Open strings ending on different branes

1.1. STRING THEORY, SUPERSYMMETRIES AND FIELD THEORIES

Supersymmetry:

- It is a symmetry whose charge is a fermionic operator.
- Noether's theorem: A symmetry implies a conserved current composed of charges.
- In supersymmetry, the charges Q satisfy a superalgebra and have the following action on fermionic and bosonic states:

$$Q |boson\rangle = |fermion\rangle$$
, $Q |fermion\rangle = |boson\rangle$

 R-symmetry transforms different supercharges into each other. It can be introduced via commutation relations.

1.1. STRING THEORY, SUPERSYMMETRIES AND FIELD THEORIES

Fields:

- Since we have quantum strings, oscillator modes acting on the ground state give rise to a quantized spectrum of oscillations.
- This spectrum reveals the presence of different kind of fields.
- To describe fermions, we require to add supersymmetries.
- For superstrings, the space-time needs to be D=10 dimensional to be consistent.
- There are massless fields from the bosonic string common to all string theories, but other kind of fields appears depending on how we add supersymmetry.

1.1. STRING THEORY, SUPERSYMMETRIES AND FIELD THEORIES

- We can do different choices when we add fermions to the worldsheet.
- We can add fermions in the left-moving or in the right-moving sectors of the string giving rise to different forms of extra bosonic fields.
- Type-II superstrings: both left and right-moving worldsheet fermions.
- 2 kind of boundary conditions to make the theory consistent: Type-IIA or Type-IIB superstrings.

1.2. Type-IIB String Theory

- Type-IIB superstring spectrum gives rise to different fields than the Type-IIA superstring one.
- Type-IIB superstring exhibits $\mathcal{N} = (2,0)$ supersymmetry. It is a chiral theory.
- Type-IIB has stable Dp-branes only with p odd. In 10d, the only possibilities are $(D_1, D_3, D_5, D_7, D_9)$.

1.3. 3D $\mathcal{N} = 4$ Quiver Theories

 \blacksquare 3d $\mathcal{N}=$ 4 linear quiver gauge theories:

Theories as a product of unitary groups, i.e. with gauge groups of the form:

$$G = \prod_{i=1}^k U(N_i)$$

■ Can be represented as:

Figure 5: General quiver diagram

1.3. 3D $\mathcal{N} = 4$ QUIVER THEORIES

■ In 3d, the field content of $\mathcal{N}=4$ gauge theories is organized in multiplets with 4 real bosonic fields.

$\mathcal{N}=4$	$\mathcal{N}=2$ (superfield)	Components	$SU(2)_C \times SU(2)_H$	G
Vector	Vector	A_{μ}		
multiplet	multiplet (V)	σ		adjoint
		fermions and aux.	$\{\sigma, Re\varphi, Im\varphi\}$ in $(1,0)$	
	Chiral	φ		
	multiplet (Φ)	fermions and aux.		
Hyper	Chiral	Q		\mathcal{R}
multiplet	multiplet (ϕ)	fermions and aux.	$\{Q, \tilde{Q}\}\ $ in $(0, \frac{1}{2})$	
	Chiral	$ ilde{Q}$		\mathcal{R}^*
	multiplet $(ilde{\phi})$	fermions and aux.		

Table 1: Field content and R-charges of the $\mathcal{N}=4$ supermultiplet

- $\blacksquare \ Q=\frac{\phi_1+i\phi_2}{\sqrt{2}}$, $\tilde{Q}=\frac{\tilde{\phi_1}+i\tilde{\phi_2}}{\sqrt{2}}$, σ a real scalar.
- These Quantum Field Theories have a really well-known Lagrangian description.

1.3. 3D $\mathcal{N} = 4$ Quiver Theories

- The Moduli space is the geometrical space parametrised by the vacuum expectation values (vevs) of the scalar fields present in the theory.
- The scalar fields of the vector-multiplet parametrize the Coulomb branch of the Moduli space.
- The scalar fields of the the hypermultiplet parametrize the Higgs branch.
- In 3d $\mathcal{N}=4$ supersymmetry, we have an $SO(4)_R \simeq SO(3) \times SO(3) \simeq SU(2)_C \times SU(2)_H$ R-symmetry.
- The fields from the vector-multiplets are rotated by the $SU(2)_C$ factor of the R-symmetry $SU(2)_C \times SU(2)_H$.
- The fields from the hypermultiplets are rotated by the $SU(2)_H$ factor.
- The couplings of the theory have the dimension of a mass, the theories are strongly coupled at low energies.

1.4. Brane realization of 3D $\mathcal{N}=4$ Quiver theories...

- The ends of the open string are charged under gauge fields.
- We have U(1) gauge field on the worldvolume of the branes.
- With N parallel Dp-branes on top of each other, the worldvolume gauge symmetry is enhanced to U(N).
- \blacksquare Thus we can find a description of 3d $\mathcal{N}=4$ theories using branes in Type-IIB String theory.

1.4. Brane realization of 3D $\mathcal{N}=4$ Quiver theories

- We start by considering D3-branes presenting a 4d theory.
- To make it a 3d theory, we do a compactification along one of its coordinates.
- To do so, we can introduce other branes in the theory on which the D3s will end.
- We can use two different kind of fivebranes: D5-branes or NS5-branes presenting different boundary conditions.
- Taking care of not breaking all the supersymmetries, we have to add them spanning different directions.

1.4. Brane realization of 3D $\mathcal{N}=4$ Quiver theories...

	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	<i>X</i> 8	<i>X</i> 9
D3	-	-	-	Χ	Χ	Χ	-	Χ	Χ	Χ
D5	-	-	-	Χ	Χ	Х	Χ	-	-	-
NS5	-	-	-	-	-	-	Χ	Χ	Χ	Χ

Table 2: Our brane system realizing a 3d $\mathcal{N}=4$ theory, where "X" means that the brane is point-like in that direction and "-" means it is extended in that direction.

Figure 6: A brane configuration example

1.4. Brane realization of 3D $\mathcal{N}=4$ Quiver theories

■ The correspondence between quiver diagrams and brane configurations:

Figure 7: General quiver diagram

Figure 8: A brane configuration example

1.4. Brane realization of 3D $\mathcal{N}=4$ Quiver theories

Brane configuration	Fixed transverse coordinates	Hypermultiplet	Vector multiplet
	of the D3	scalars	scalars
\otimes — \otimes	(x_7, x_8, x_9)	{0}	$\{arphi_i,\sigma\}$
	(x_3, x_4, x_5)	$\{Q, ilde{Q}\}$	{0}
\otimes —	$(x_3, x_4, x_5, x_7, x_8, x_9)$	{0}	{0}

Table 3: The different boundary conditions of the D3 and its fields associated

2. Study of the 3d $\mathcal{N}=4$ theories

2.1. The different Brane configurations

- We can deduce the analog brane configuration of a quiver via the correspondence we found.
- In the IR, we can reorder all the branes along x^6 . During this procedure, we have to take care of:
 - ▶ The S-rule: only one D3 stretched between an NS5 and a D5.
 - ► The Hanany-Witten transitions.

2.1.1. Special configurations

Figure 9: Quiver diagram of some special theories

Figure 10: The SQCD picture with branes

2.1.2. The General case $T^{\rho}_{\hat{\rho}}[SU(N)]$

(a) Quiver of a random theory

(b) Quiver of an other random theory

(c) Its linking numbers

(d) Its linking numbers

Figure 11: Determination of ρ and $\hat{\rho}$ for two different quivers

$$\rho = (l_1, l_2, l_3, ...), \hat{\rho} = (\hat{l}_{\hat{1}}, \hat{l}_{\hat{2}}, \hat{l}_{\hat{3}}, ...)$$

- 3d mirror symmetry predicts the existence of 3d $\mathcal{N}=4$ pairs of theories that flow to the same conformal theory in the infrared.
- An easy way to visualize it is the following:

Figure 12: Representation of two different theories in the UV flowing to the same one in the IR

- Mirror symmetry appears in the study of the Moduli spaces of the dual gauge theories.
- The space of vacua parametrised by the scalar fields in the vector multiplet is called the Coulomb branch.
- The space of vacua parametrised by the scalar fields in the hypermultiplet is known as the Higgs branch.
- One of the possible representation is the following:

Figure 13: A possible representation of the Coulomb and Higgs branches of a Moduli space as well as a Mixed branch appearing at some subloci

- Mirror symmetry predicts that the Coulomb branch of a certain gauge theory corresponds to the Higgs branch of a dual theory, and vice-versa.
- Coulomb branch can be affected by quantum corrections, however the Higgs branch is not.
- With mirror symmetry, possibility to compute the Coulomb branch of a given theory via the computation of the Higgs branch of its dual.
- Two theories flow in the IR if they respect the following inequalities for each gauge node:

$$M_i + N_{i-1} + N_{i+1} \ge 2N_i$$

■ They are called good theories and always flow in the IR.

- There are several ways to obtain the dual Mirror of a theory.
- In field theory, via Electric-magnetic duality.
- In Type-IIB String theory, via S-duality.
- In Type-IIB, S-transformations exchange D5-branes and NS5-branes but keep D3-branes unchanged.
- We just have to reorder all the branes to determine which is the new theory obtained, the dual.
- The theory we obtained in the IR present a flavor group which is the product of the flavor froups of the two Mirror theories.

2.2.1. SQCD₄ WITH 2 COLORS

- (c) SQCD₄ mirror brane construction with 2 colors after Hanany-Witten transitions
- (d) Quiver of the Mirror of *SQCD*₄ with 2 colors

Figure 14: The process to obtain the Mirror theory of SQCD₄ with 2 colors

2.2.2. SQED_{N_f}

Figure 15: The general quiver diagram of the $SQED_{N_f}$ mirrors

2.2.3. T[SU(4)]

Figure 16: The process to obtain the Mirror theory of T[SU(4)]

 \blacksquare T[SU(N)] theories are the self-dual theories of Mirror symmetry.

2.2.4. The general case $T^{\rho}_{\hat{\rho}}[SU(N)]$

(a) Quiver of a random theory

(b) Quiver of the mirror of the random theory

(c) Determination of its linking numbers (d) Determination of the linking numbers of the mirror

Figure 17: Example of the determination of ρ and $\hat{\rho}$ for a quiver and its mirror

2.2.4. The general case $T_{\hat{\sigma}}^{\rho}[SU(N)]$

■ The condition for the theory to respect all the supersymmetries is:

$$\hat{\rho}^T > \rho$$

■ The condition for the theory to be good and flow in the IR has become:

$$\rho^T \geq \hat{\rho}$$

We have ρ :

, ρ̂: —

 \Box , and $\hat{\rho}^T$:

		•

2.3. The Moduli space

- The scalar vevs parametrize the Moduli space of vacua of the theory.
- To have a simple visualization, we can look at the following:

Figure 18: A possible representation of the Coulomb and Higgs branches of a Moduli space as well as a Mixed branch appearing at some subloci

2.3.1. Brane realization of Mixed Branches of T[SU(N)] theories

- The vevs of the vector-multiplets are non zero when the D3s are between two NS5s and free to move along (x^3, x^4, x^5) .
- The vevs of the hypermultiplets are non zero when the D3s are between two D5s and free to move along (x^7, x^8, x^9) .
- The same theory can have different configurations of moving D3s.
- To manipulate our theory and making it more simpler, we first start by putting all the NS5s of our theory on the left and all the D5s to the right.
- Then, we can choose different ways of linking the D5s and the NS5s by keeping the same number of D3s and always respecting the S-rule.

2.3.1. Brane realization of Mixed Branches of T[SU(N)] theories

Figure 19: Different branches of T[SU(4)]

2.3.1. Brane realization of Mixed Branches of T[SU(N)] theories

- We can classify these Mixed branch with a partition of N:
 - $\rho = [a_1, a_2, \cdots, a_n]$ with $a_1 \geq a_2 \geq \cdots \geq a_n$, $\sum_{i=1}^n a_i = N$, and a_i is the number of D3s on the i-th D5 from the left to the right that are link to an NS5 with $i = 1, \cdots, n$.
- It is different from the ρ used to describe the theory $T^{\rho}_{\hat{o}}[SU(N)]$.
- We can also introduce an other parameter:
 - $\rho' = [b_1, b_2, \cdots, b_{n'}]$ with $b_1 \geq b_2 \geq \cdots \geq b_{n'}$, $\sum_{k=1}^{n'} b_k = N$, and b_k is the number of D3s on the k-th NS5 from the right to the left that are link to an D5 with $k = 1, \cdots, n'$.
- However, ρ' is always completely determined by ρ .
- m
 ho is the only parameter we need to describe the configuration of our Mixed branch.

2.3.1. Brane realization of Mixed Branches of T[SU(N)] theories

- We can observe that ρ is the dual partition of ρ' , which we can then call ρ^D .
- The full Moduli space expression corresponds to:

$$\mathcal{M} = \bigcup_{
ho} \mathcal{C}_{
ho} imes \mathcal{H}_{
ho}$$

- The Full Coulomb branch is thus: $C_{\rho} \times \{0\}$, and the Full Higgs branch is: $\{0\} \times \mathcal{H}_{\rho}$.
- For good theories, the Coulomb branch and the Higgs branch are swapped for the dual theory, we have $\mathcal{C}_{\rho} \simeq \mathcal{H}_{\rho^D}$ and $\mathcal{H}_{\rho} \simeq \mathcal{C}_{\rho^D}$. We can thus rewrite:

$$\mathcal{M} = \bigcup_{\rho} \mathcal{C}_{\rho} \times \mathcal{C}_{\rho^{\mathcal{D}}}$$
, or: $\mathcal{M} = \bigcup_{\rho} \mathcal{H}_{\rho^{\mathcal{D}}} \times \mathcal{H}_{\rho}$

2.3.2. Dimensions of Coulomb and Higgs branches via Brane configurations

- We can find the dimension of the Coulomb and Higgs branch factor of all Mixed branches by looking at the brane configurations.
- The dimensions of the Coulomb and Higgs branch are the most important parameters because they count the number of scalars that can take non-zero vevs in each part of the Moduli space.
- The dimension of the Coulomb branch factor C_{ρ} and of the Higgs branch factor \mathcal{H}_{ρ} formula are the following:

$$\dim(\mathcal{C}_{\rho}) = \frac{1}{2}(N^2 - \sum_{i=1}^n a_i^2)$$
, and: $\dim(\mathcal{H}_{\rho}) = \frac{1}{2}(N^2 - \sum_{i=1}^{n'} b_i^2)$

denoted by d_C and d_H respectively.

2.3.2. Dimensions of Coulomb and Higgs branches via Brane configurations

- We can thus easily compute d_C and d_H just by looking at the Brane configurations realizing these Mixed branches.
- The dimension of the Coulomb branch corresponds to the number D3s that are free to move between two NS5s
- The dimension of the Higgs branch corresponds to the number D3s that are free to move between two D5s.

2.3.2. Dimensions of Coulomb and Higgs branches via Brane configurations

Figure 20: Different branches of T[SU(4)]

■ I have also done these computations for T[SU(5)] and T[SU(6)], they can be seen in the Appendices.

2.3.3. Moduli space isomorphisms

(b) Coulomb branch of the $T^{[2,1]}[SU(3)]$ theory

(c) $T^{[2,1]}[SU(3)]$ theory after Hanany-Witten transitions

(d) Quiver of the $T^{[2,1]}[SU(3)]$ theory

Figure 21: Process to obtain the $T^{[2,1]}[SU(3)]$ theory

$$C_{[2,1]}(T[SU(N)]) \simeq C([1] - U(1) - U(1) - [1])$$

- We can reconstruct M by counting all the gauge invariant chiral operators, and grade them by their charges under all the different global symmetries of the theory.
- This is what do the Hilbert series.
- If we suppose the chiral operators are charged under N global symmetries, for each one of them, we can choose x_i , with i = 1, ..., N as a grading parameter called fugacity. We have the formula:

$$HS(x_i) = \sum_{k_1} \sum_{k_2} \dots \sum_{k_N} a_{k_1,k_2,\dots,k_N} \prod_{i=1}^N x_i^{k_i}$$

 $a_{k_1,k_2,...,k_N}$ is the number of chiral operators having respectively charges $k_1,k_2,...,k_N$ under the N symmetries.

- We will now present the general formula that can be derived for the Hilbert series of the Coulomb branches.
- Unlike the Higgs branch, the Coulomb branch receives quantum corrections.
- Thus, to study it, we can use monopole operators, which can be defined as a disorder operator in the infrared superconformal field theory.
- The general formula is:

$$HS(t) = \sum_{m} t^{\Delta(m)} P_G(m, t)$$

where t is a fugacity keeping track of the conformal dimension of the monopole operators and m their magnetic charge.

■ $P_G(m,t)$ is a correction factor taking care of the different dressings, which can take the form:

$$P_G(t,m) = \prod_{i=1}^r \frac{1}{1 - t^{d_i(m)}}$$

where r is the rank of the subgroup in which the gauge group is broken when the vev of a bare monopole operator is turned on and $d_i(m)$ are all the degrees of the r Casimir operators of this subgroup.

■ Then the conformal dimension of a bare monopole operator is given in terms of the magnetic charge *m* by the following dimension formula:

$$\Delta(\mathbf{m}) = -\frac{1}{2} \sum_{j=1}^{k} \sum_{\alpha,\beta=1}^{N_{j}} |m_{j,\alpha} - m_{j,\beta}| + \frac{1}{2} \sum_{j=1}^{k} M_{j} \sum_{\alpha=1}^{N_{j}} |m_{j,\alpha}| + \frac{1}{2} \sum_{j=1}^{k-1} \sum_{\alpha=1}^{N_{j}} \sum_{\beta=1}^{N_{j+1}} |m_{j,\alpha} - m_{j+1,\beta}|$$

where N_j corresponds to gauge nodes on the Figure 1 and M_j to the flavors.

- In the case of linear quiver theories we have considered, we can further refine the counting by including other fugacities z_i .
- We can relate, in the brane picture, moving D3s between NS5s positions with the magnetic charges of monopole operators m.

- We now consider the simple case of the T[SU(3)].
- Our brane configurations are then associated in the following way.

Figure 22: Mixed branch $\rho = [2,1]$ of T[SU(3)]

■ m_1 corresponds to the magnetic charge for U(1), and m_{21} and m_{22} are the magnetic charges for U(2).

■ We also have the Weyl chamber condition stating: $m_{21} \ge m_{22}$. The Hilbert series for the full Coulomb branch is thus given by the general formula:

$$\label{eq:hs} \textit{HS}(t,z_1,z_2) = \sum_{m_1 = -\infty}^{\infty} \sum_{m_{21} \geq m_{22}} t^{\Delta(m_1,m_{21},m_{22})} z_1^{m_1} z_2^{m_{21} + m_{22}} P_{\textit{U}(1)}(m_1,t) P_{\textit{U}(2)}(m_{21},m_{22},t)$$

with:
$$\Delta_1(m_1, m_{21}, m_{22}) = -|m_{21} - m_{22}| + \frac{1}{2}(|m_1 - m_{21}| + |m_1 - m_{22}| + 3|m_{21}| + 3|m_{22}|),$$

and the classical factors:

$$P_{U(1)}(m_1,t)=\frac{1}{1-t},$$

and:

$$P_{U(2)}(m_1, m_{21}, m_{22}) = \begin{cases} \frac{1}{(1-t)(1-t^2)}, \text{ for } m_{21} = m_{22} \\ \frac{1}{(1-t)^2}, \text{ for } m_{21} > m_{22} \end{cases}$$

- Then we can focus on the Mixed branch $\rho = [2, 1]$.
- We either need $m_{21} = 0$ or $m_{22} = 0$ to respect this configuration. Thus, we deduce the following expression for the Hilbert series of the Coulomb branch factor of the Mixed branch $\rho = [2, 1]$:

$$\begin{split} HS(t,z_1,z_2) &= \sum_{m_1=-\infty}^{\infty} \sum_{m_{22} \leq 0}^{\infty} t^{\Delta_1(m_1,m_{22})} z_1^{m_1} z_2^{m_{22}} P_{U(1)}(m_1,t) P_{U(1)}(m_{22},t) \\ &+ \sum_{m_1=-\infty}^{\infty} \sum_{m_{21} \geq 0}^{\infty} t^{\Delta_2(m_1,m_{21})} z_1^{m_1} z_2^{m_{21}} P_{U(1)}(m_1,t) P_{U(1)}(m_{21},t) \end{split}$$

with:
$$\Delta_1(m_1, m_{22}) = \Delta(m_1, 0, m_{22}) = \frac{1}{2}(|m_1| + |m_1 - m_{22}| + |m_{22}|),$$

and:
$$\Delta_2(m_1, m_{21}) = \Delta(m_1, m_{21}, 0) = \frac{1}{2}(|m_1| + |m_1 - m_{21}| + |m_{21}|).$$

■ The Hilbert series of the Full Coulomb branch of the [1]-U(1)-U(1)-[1] theory is:

$$HS(t,z_1,z_2) = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} t^{\Delta(n_1,n_2)} z_1^{n_1} z_2^{n_2} P_{U(1)}(n_1,t) P_{U(1)}(n_2,t)$$

with: $\Delta(n_1, n_2) = \frac{1}{2}(|n_1| + |n_1 - n_2| + |n_2|)$, and where n_1 , n_2 are the magnetic charges of the two U(1) gauge groups.

■ The full Coulomb branch of [1]-U(1)-U(1)-[1] and the Coulomb branch factor of the Mixed branch $\rho=[2,1]$ of T[SU(3)] are indeed isomorphics.

2.3.4. Hilbert series

■ By computing these Hilbert series, we obtain:

$$\begin{split} \mathit{HS}(t,z_1,z_2) &= 1 + t \left[2 + z_1 z_2 + \frac{1}{z_1 z_2} + z_1 + \frac{1}{z_1} + z_2 + \frac{1}{z_2} \right] \\ &+ t^2 \left[3 + 2 \left(z_1 z_2 + \frac{1}{z_1 z_2} + z_1 + \frac{1}{z_1} + z_2 + \frac{1}{z_2} \right) \right. \\ &+ z_1^2 z_2^2 + \frac{1}{z_1^2 z_2^2} + z_1^2 z_2 + \frac{1}{z_1^2 z_2} + z_1^2 + \frac{1}{z_1^2} + z_1 z_2^2 + \frac{1}{z_1 z_2^2} + \frac{z_1}{z_2} + \frac{z_2}{z_1} + z_2^2 + \frac{1}{z_2^2} \right] \\ &+ t^3 \left[4 + 3 \left(z_1 z_2 + \frac{1}{z_1 z_2} + z_1 + \frac{1}{z_1} + z_2 + \frac{1}{z_2} \right) \right. \\ &+ 2 \left(z_1^2 z_2^2 + \frac{1}{z_1^2 z_2^2} + z_1^2 z_2 + \frac{1}{z_1^2 z_2} + z_1^2 + \frac{1}{z_1^2} + z_1 z_2^2 + \frac{1}{z_1 z_2^2} + \frac{z_1}{z_2} + \frac{z_2}{z_1} + z_2^2 + \frac{1}{z_2^2} \right) \\ &+ z_1^3 z_2^3 + z_1^3 z_2^2 + z_1^3 z_2 + z_1^3 + z_1^2 z_2^3 + \frac{z_1^2}{z_2} + z_1 z_2^3 + \frac{z_1^2}{z_2} + z_2^3 + \frac{1}{z_1^2} + \frac{z_2^2}{z_1} + \frac{1}{z_1 z_2^3} \\ &+ \frac{z_2}{z_1^2} + \frac{1}{z_1^2 z_2^3} + \frac{1}{z_1^3} + \frac{1}{z_1^3 z_2} + \frac{1}{z_1^3 z_2^2} + \frac{1}{z_1^3 z_2^3} \right] + O\left(t^4\right) \end{split}$$

■ In the end, we can gathered the terms in the following expression, verified up to the 9-th order:

$$HS(t, z_1, z_2) = \sum_k \chi^{(k,k)}(z_1, z_2) t^k$$

where $\chi^{(k,k)}(z_1,z_2)$ are the characters of the representation where (k,k) are the Dynkin labels of the $\mathfrak{su}(3)$ Lie algebra.

- We thus have fully computed the Hilbert series of the Coulomb branch factor of the Mixed branch $\rho = [2, 1]$ of the T[SU(3)] theory.
- However, this is a whole different process to determine it for the Higgs branch.
- However, since T[SU(3)] is self-dual under the Mirror Symmetry, the computation of the Higgs branch is not necessary.

Conclusion

Conclusion

- \blacksquare We have studied 3d $\mathcal{N}=4$ quiver theories via Type-IIB Brane configurations.
- We have seen:
 - ► How to manipulate them.
 - How the branches of the Moduli space exchange in respect to the Mirror Symmetry, corresponding to S-duality in Type-IIB String Theory.
- We have been able to compute:
 - ▶ The dimensions of the Coulomb and Higgs branch parts of different Mixed branches of T[SU(N)] theories.
 - ▶ The Hilbert series of T[SU(3)] describing its Moduli space.

PERSPECTIVES

- Computation of dimensions of Coulomb or Higgs branch parts of mixed branches of more general unitary quiver theories, such as $T^{\hat{\rho}}_{\rho}[SU(N)]$ which is not yet found in the bibliography.
- Computation of Hilbert series for the Higgs branch.

Computation of Hilbert series can be applied to all families of 3d $\mathcal{N}=4$ theories (unitary and non-unitary).

■ Study of the Type-IIB supergravity solutions in AdS_4 which are dual to the above 3d $\mathcal{N}=4$ theories studied here.

These theories play a central role in gauge/gravity correspondence or equivalently the AdS/CFT correspondence (Anti- de Sitter/Conformal Field theory correspondence).

Conjecture stating that String Theory (or its low-dimensional supergravity) in (d+1)—dimensional Anti-de Sitter space is dual to a (super)conformal field theory living on its boundary in one dimension lower.

Appendices

APPENDICES

ρ	Coulomb branch dimension d_C	Higgs branch dimension d_H
[5]	0	10
[4,1]	4	9
[3,2]	6	8
[3,1,1]	7	7
[2,2,1]	8	6
[2,1,1,1]	9	4
[1,1,1,1,1]	10	0

Table 4: Dimensions of all possible mixed branches of T[SU(5)]

APPENDICES

ρ	Coulomb branch dimension d_C	Higgs branch dimension d_H
[6]	0	15
[5,1]	5	14
[4,2]	8	13
[3,3]	9	12
[4,1,1]	9	12
[3,2,1]	11	11
[3,1,1,1]	12	9
[2,2,2]	12	9
[2,2,1,1]	13	8
[2,1,1,1,1]	14	5
[1,1,1,1,1,1]	15	0

Table 5: Dimensions of all possible mixed branches of T[SU(6)]

APPENDICES

Figure 23: One-loop scattering of two closed strings

Figure 24: Scattering of two open strings

Bibliography

Bibliography

- [1] Elias Kiritsis, *String Theory in a Nutshell*. In a Nutshell. Princeton University Press, 2011.
- [2] Katrin Becker, Melanie BECKER, and John H. Schwarz, *String Theory and M-Theory: A Modern Introduction*. Cambridge University Press, 2007.
- [3] Joseph Polchinski, String Theory, Volume I: An Introduction to the Bosonic String. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1998.
- [4] Joseph Polchinski, String Theory, Volume II: Superstring Theory and Beyond. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1998.
- Kenneth Intriligator and Nathan Seiberg, Mirror Symmetry in Three Dimensional Gauge Theories, Phys. Lett. B387 (1996) 513-519, [hep-th/9607207].
- [6] Elias Kiritsis, Introduction to Superstring Theory, (1998), [hep-th/9709062].
- [7] Nathan Seiberg and Edward Witten, *Gauge Dynamics And Compactification To Three Dimensions*, (1996), [hep-th/9607163].

BIBLIOGRAPHY

- [8] Naoki Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, (2020), [1511.08771].
- [9] Clifford V. Johnson, From M-theory to F-theory, with Branes, Nucl. Phys. B507 (1997) 227-244, [hep-th/9706155].
- [10] Constantin Bachas, Massimo Bianchi and Amihay Hanany, $\mathcal{N}=2$ Moduli of AdS_4 vacua: A fine-print study, JHEP **08** (2018) 100, [1711.06722].
- [11] Amihay Hanany and Edward Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B492 (1997) 152-190, [hep-th/9611230].
- [12] Benjamin Assel, *Ring relations and mirror map from branes*, JHEP **03** (2017) 152, [1701.08766].
- [13] Federico Carta and Hirotaka Hayashi, Hilbert series and mixed branches of T[SU(N)] theories, JHEP **02** (2017) 037, [1609.08034].
- [14] Constantin Bachas, Ioannis Lavdas and Bruno Le Floch, Marginal Deformations of 3d $\mathcal{N}=4$ Linear Quiver Theories, JHEP $\mathbf{10}$ (2019) 253, [1905.06297].

BIBLIOGRAPHY

- [15] Stefano Cremonesi, Amihay Hanany and Alberto Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d $\mathcal{N}=4$ gauge theories, JHEP **01** (2014) 005, [1309.2657].
- [16] Ofer Aharony, Amihay Hanany, Kenneth Intriligator, Nathan Seiberg, and Matthew J. Strassler, Aspects of N=2 Supersymmetric Gauge Theories in Three Dimensions, Nucl.Phys. **B499** (1997) 67-99, [hep-th/9703110].
- [17] Jan de Boer, Kentaro Hori and Hirosi Ooguri and Yaron Oz, Mirror Symmetry in Three-Dimensional Gauge Theories, Quivers and D-branes, Nucl. Phys. B493 (1997) 101-147, [hep-th/9611063].
- [18] Jan de Boer, Kentaro Hori, Hirosi Ooguri, Yaron Oz and Zheng Yin, Mirror Symmetry in Three-Dimensional Gauge Theories, SL(2, Z) and D-Brane Moduli Spaces, Nucl. Phys. B493 (1997) 148-176, [hep-th/9612131].
- [19] Stefano Cremonesi, Noppadol Mekareeya and Alberto Zaffaroni, *The moduli spaces of 3d* $\mathcal{N} \geq 2$ *Chern-Simons gauge theories and their Hilbert series*, JHEP **10** (2016) 046, [1607.05728].

BIBLIOGRAPHY

- [20] Stefano Cremonesi, Amihay Hanany, Noppadol Mekareeya and Alberto Zaffaroni, $T^{\sigma}_{\rho}(G)$ Theories and Their Hilbert Series, JHEP **01** (2015) 150, [1410.1548].
- [21] Constantin Bachas and Ioannis Lavdas, Massive Anti-de Sitter Gravity from String Theory, JHEP 11 (2018) 003, [1807.00591].
- [22] Benjamin Assel, Costas Bachas, John Estes and Jaume Gomis, *Holographic Duals of D* = 3 $\mathcal{N}=4$ *Superconformal Field Theories*, JHEP **08** (2011) 087, [1106.4253].
- [23] Benjamin Assel, Costas Bachas, John Estes and Jaume Gomis, *IIB Duals of* D=3 $\mathcal{N}=4$ *Circular Quivers*, JHEP **12** (2012) 044, [1210.2590].