

Study of ATLAS Forward Proton TOF performances on Run 3 data

Alexian LEJEUNE Supervised by Mario Campanelli (UCL)

From March 20th to August 4th

Introduction

Theoretical basics

Cherenkov effect Diffractive physics

Experimental basics

Time of flight detectors Review of run 2 Upgrades for run 3

Methods exploited

Single channel efficiencies Train efficiencies

Results

2022 results 2023 first results

Conclusion

Introduction

ATLAS Forward Proton : generalities

Cherenkov effect

- AFP ToF detectors are based on this effect
- Happens when charged particles travel faster Than light in a specific medium (but v < c)
- Characterized by a cone geometry with an angle $\boldsymbol{\theta}$ such as :

$$cos\theta = \frac{1}{\beta n}$$

Diffractive physics 1/2

- Diffractive processes = processes where **no** quantum numbers are exchanged
- Quantum **Chromo**dynamics mediators are gluons which carry a color charge

QCD "confinement" impose that all observable particles are colorless

Diffractive processes in proton-proton via exchange of two gluons in singlet state or colorless "Pomeron"

Diffractive physics 2/2

- Two experimental signatures : rapidity gaps and intact protons in the forward direction

Soft processes

Experimental basics

ATLAS Forward Proton : time of flight detectors

- Very simple in principle, but need very strong precision in time resolution

7

Experimental basics

ATLAS Forward Proton : Review of run 2 performances

Expected specifications

- time resolution of 10 ps
- efficiency > 90%
- radiation hard

Observed specifications

- time resolution 20 30 ps
- efficiency of 8 9%
- efficiency decreasing over time \rightarrow degradation of photomultipliers
- efficiency of side A > side C

Experimental basics

ATLAS Forward Proton : upgrades during long shutdown 2

- Photomultipliers position changed, placed outside Roman pots
- Damaged photomultipliers replaced, LQ Bars replaced by glueless bars, many hardware updates...
- HPTDC should have been replaced by PicoTDC, but has not been !

In the end, should be radiation hard now

Single channel efficiencies : efficiency calculation

$$\varepsilon_{ijk} = \frac{N(bar - ij \mid track - k)}{N(track - k)}$$

N(bar-ij | track-k) : nb of events with a Track in SiT «train k» and also hits in ToF Channel i and train j N (track-k) : nb of events with a track in SiT train k

Nota bene : $j \neq k$ which allows «strange» cases

Courtesy of Karel Cerny

ToF efficiencies : any case

- The most global case
- Application of previous equation with the only condition : **only 1** track in the SiT
- Allows to probe the performances of the ToF detectors on a detector level

$$\varepsilon_{ijk} = \frac{N(bar - ij \mid track - k)}{N(track - k)}$$

ToF efficiencies : clean case

- Included in the «any» case calculation

- Two conditions : a single track in the SiT and events with ToF signals in a single ToF train -> less stat.

- Allows to probe the performances of the ToF detectors on a physics level

$$\varepsilon_{ijk} = \frac{N(bar - ij \mid track - k)}{N(track - k)}$$

$$TR3 \rightarrow A B C D A B C D A B C D$$

ToF efficiencies : train efficiencies

- Is calculated for both the «any» and the «clean» cases
- A column is artificially added in the results plots \rightarrow see next chapter
- Is used to plot the efficiency over time so we have only 4 points per run and per side

$$\varepsilon_{ijk} = \frac{N(bar - ij \mid track - k)}{N(track - k)}$$

How to understand single channel efficiencies ?

Magenta line are not present in the final result plots

2022 results : example of a low pile-up run in «any case»

- Eff. can reach >90%

- Asymmetry between FAR-A and FAR-C

- Leakage in other trains is **NOT** negligible

Run : 435229 (24 Sept. 2022), µ < 0.1, 18 096 933 events Topology :

Г	R	un 435229,	√s = Far-C, Trair	= 13.6 TeV 13, 1620 Ev	ents	-
	93.27 ± 2.30	94.69 ± 2.34	94.14 ± 2.33	86.67 ± 2.14	97.16 ± 2.40	-
The second s	66.30 ± 1.63	71.60 ± 1.77	69.57 ± 1.72	68.40 ± 1.69	79.69 ± 1.97	-
and the second se	24.94 ± 0.61	26.36 ± 0.64	27.22 ± 0.66	25.12 ± 0.61	29.26 ± 0.71	-
	23.70 ± 0.58	24.75 ± 0.60	24.20 ± 0.59	22.10 ± 0.54	26.73 ± 0.65	
-	Channel A	Channel B	Channel C	Channel D	Train	-

	R	un <mark>43</mark> 5229,	√s = Far-C, Trair	= 13.6 TeV 1 2, 102346	Events	100 . 0
frain 3	14.95 ± 0.05	25.11 ± 0.08	25.06 ± 0.08	14.05 ± 0.04	39.47 ± 0.12	-00 -00
frain 2	93.08 ± 0.29	99.19 ± 0.31	98.51 ± 0.31	96.57 ± 0.30	99.82 ± 0.31	-70
Train 1	5.27 ± 0.01	9.49 ± 0.03	12.37 ± 0.04	7.59 ± 0.02	16.29 ± 0.05	-40
frain O	4.07 ± 0.01	4.59 ± 0.01	4.62 ± 0.01	4.07 ± 0.01	5.21 ± 0.01	-20
	Channel A	Channel B	Channel C	Channel D	Train	0

2022 results : example of a low pile-up run in «clean case»

- Expected behavior : pointed train eff. ↗ other trains eff. ↘

- Statistics loss up to **75%** in this run !

- Some channels completely lack of data

Run : 435229 (24 Sept. 2022), µ < 0.1, 18 096 933 events Topology :

44 runs from April 21th 2023 to May 25th 2023

Preliminary conclusion of run 3 performances

- Great efficiencies **CAN** be achieved with the time of flight detectors
- However the great performances were not maintained over the year \rightarrow Seems like it is a matter of hardware settings
- A dedicated run at low pile-up will happen next week at the LHC, the AFP group will take this run as an opportunity to probe the problems of the ToF detectors !
- If the good performances in time resolution are confirmed in run 3, the ToF detectors could be able to have really great performances to study physics of interest

Conclusion

What's next?

Concerning the efficiencies :

- Unification/documentation of the analysis code
- Efficiency vs pile-up study
- Investigating multiple hits

After the work on efficiencies is finished :

- Time resolution determination

Thank you for your attention !

Bibliography

L Adamczyk et al. Technical Design Report for the ATLAS Forward Proton Detector. Rapp. tech. 2015. url : <u>https://cds.cern.ch/record/2017378</u>

S. Bethke. « α s 2002 ». In : Nuclear Physics B - Proceedings Supplements 121 (2003). Proceedings of the QCD 02 9th High-Energy Physics International Conference on Quantum ChromoDynamics, p. 74-81. issn : 0920-5632. doi : https://doi.org/10.1016/S0920- 5632(03) 01817 - 6. url : https://www.sciencedirect.com/science/article/pii/S0920563203018176

S. Donnachie et al. Pomeron Physics and QCD. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2002. isbn : 9780521780391. url : <u>https://books.google.ch/books?id=f-VzngEACAAJ</u>

Performance of the ATLAS Forward Proton Time-of-Flight Detector in 2017. Rapp. tech. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-FWD-PUB2021-002. Geneva : CERN, 2021. url : <u>https://cds.cern.ch/record/2749821</u>

Staszewski Rafal. « Study of Diffraction with the ATLAS detector at the LHC ». presented 24 Sep 2012. 2012. url : https://cds.cern.ch/record/1504372

Rafal Staszewski. ATLAS Roman Pots at LHC Run 3. Rapp. tech. Geneva : CERN, 2022. url : https://cds.cern.ch/record/2835938

Back up

Ntuples creation

Previous format «vector like»

- unclear

 more needy in storage place

- error prone due to the many indices

New format «object like»

- way clearer, easier to code with

- translate how is the data taken

 \rightarrow ~200 runs processed this way

Number of runs and integrated luminosity

	Number of Runs	Integrated Luminosity
2022	156	36.1 <i>fb</i> ⁻¹
2023	42	11.7 fb^{-1}

2022 runs correspond to around 220 Gb of data 2023 runs correspond to around 90 Gb of data

Back-up

2022 results : anomalies detected

- Anomalies have been detected in <10 runs / 150 \rightarrow Mainly during the latest runs of 2022
- The only possibility for this to happen according to the code is **multi-hits** in a single channel during the same event !

- Problem coming from the CDF of PMT ?

Silicon tracker Region of Interest

- Silicon tracker do not possess physical trains like the ToF detectors do.
- To determine the SiT trains ROI, they look at the x-coordinate of tracks when a signal was detected in the concerned ToF train. (With the condition : an unique track in the silicon tracker)
- They then look at the distribution of the track x-coordinate and make bounds between the x-coordinates where there are the most events.
- A side and C side have different region of interest !

Back-up

Standard Model of particle physics

- Describes **3 out the 4** fundamental interactions of our universe
- Interactions carried by integer spin particles called **«bosons»**
- Matter described by half-integer spin particles called «fermions»
- Is fallible and is **NOT** the final picture !

Back-up

Ssdd

Text

Figure 2: Schematic view of a leading proton detection in the SiT and ToF detector of the FAR-C station. The LQ bars traversed by the leading proton are highlighted by blue colour.

Back-up

Ssdd

Text

Figure 3: Photo of the assembled AFP detector composed of the Silicon tracker (SiT) and the Time-of-flight detector Alexian LEJEUNE - Mast (ToF) with leading proton trajectory indicated with an oriented red line. The segmentation of the ToF to trains and

2022 results : efficiency over time

Update results

- ARP General Meeting last week -> we got to talk about the results, we are no
- -> a special low mu run in two weeks will hap it will be an opportunity to probe the issues

Point to the moment when TDC starting having problem!!!

2023 results : efficiency over time

Runs

Back-up

Ssdd

156 runs from 5 Jul 2022 ~ 27 Nov 2022

Back-up

Ssdd

44 runs from 21 Apr 2023 ~ 25 May 2023

Main title

Sub-title

Text