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Theoretical and
Experimental Context




Neutrino Oscillation

Anomaly in the atmospheric and solar neutrino flux (deficit of about 50% in relation to what was

expected) led us to a new theory beyond the standard model...
Q-0

...Neutrinos can oscillate from a flavour to another. \ /
Upnins
| .
Flavour eigenstates correspond to superimposition e T [

of mass eigenstates related by an unitary matrix:
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Neutrino Oscillation

Mechanism

e The propagation in time of the mass eigenstates |, (%)) is described by the Schrédinger equation.

L It is possible to obtain the transition probability from a flavour « to another /3:
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with L the distance from the creation of the neutrino flavour eigenstate, E the average energy eigenvalue
of the neutrino mass eigenstates and Am‘f,j = mj — m; the mass splitting of the mass eigenstates.
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Normal and Inverse Ordering

In vacuum 7P,__,,,(L. E)depends of Amj; Normal Inverted
which are within a square sine. But in matter, V3 — Vo
the oscillation probability is modified in a way K2
that depends on the sign of the mass splitting. 21 ,
1
Am’%l
Only the sign of the mass splitting Am?, has
been determined. Ams
V2
¢ Am2,
vy EEEee——
There are 2 possibilities concerning the sign
of Am3,. m v, m v, m v,




Normal and Inverse Ordering

x103
Considering the transition probability in the case 120[- 2000 days of data taking  —— No oscillations
we are dealing with (disappearance of reactor antineutrinos): } ===t Only: selar-term
L —— Normal ordering
K s i AmZ. x L 100:_ —— Inverted ordering
PWe = Ve) =1 —cos (6y3) sin? (291))\111 (4)—113”) — %1112(26'1-;) . (;—ép) E 802_ \
— Sillz(()lg) sin® (7915)sln (%) cos (%) ‘g 605_ »
sin?(f12) . ,,. . f2AmE, % LY [ AmE e L & : sin” 2012
+ 5 sin”(26,3) sin — 5 sin — 4B, :>j sl lsin 20,5
e, JUNO ol v LA \G
’ I Am%1 Am%2 O
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Ve <‘(
R FE5 ~[2—10]MeV |t is possible to determine the neutrino mass hierarchy ( Am3, )
E— ~[2 — 10|MeV if we have an excellent energy resolution.




The JUNO Experiment

JUNO Characteristics

35m of diameter sphere
20kton of liquid scintillator
Muon tracker and veto system

~53km from 2 nuclear power plants

17,612 20-inch large photo-multiplier tubes (LPMT)
25,600 3-inch small photo-multiplier tubes (SPMT)

Complete detector system collects about 1,700

photo-electrons/MeV

Kt I

adyer

.
o

%
I
e

essel ed




The JUNO Experiment

) PMT's Characteristics
(!

> Large photo-multiplier tubes (LPMTs):

photon

e 5000 Hamamatsu PMTs:
Transit Time Spread: 1.1ns
Dark Noise: 15kHz

e 12,612 MCP-PMTs:
Transit Time Spread: 5.0ns
Dark Noise: ~49kHz

transit o = tTTS »

> Small photo-multiplier tubes (SPMTs):

Transit Time Spread : 1.5ns
Dark Noise: 500Hz




The JUNO Experiment

) PMT's Characteristics

> Large photo-multiplier tubes (LPMTs):

photon

5,000 Hamamatsu PMTs:
Transit Time Spread: 1.1n
Dar ' R

» o 12,612 MCP-PMTs:
transit o = tTTS

Transit Time Spread: 5.0ns
Dark Noise: ~49kHz




Real signal and Background

When an antineutrino from the reactor source
arrives in the liquid scintillator, it can manifest
itself as an IBD:
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Ortho-positronium formation (in vacuum)

o c c Formation Probability f
Positronium Properties

-> Before annihilating, the
positron can form a
positronium metastable state B.R. 75%

direct
annihilation

B.R. 25%

para-Positronium

The ortho-positronium (o-Ps) ortho-Positronium (p-Ps)
state leads to a delayed ef) LT
annihilation Total Spin =1 T (vacuum) = 125 ps

T (vacuum) =142 ns

While the lifetime of the

para-positronium is too short, ,

that of ortho-positronium is %\*f\ﬁ S kevysfr
longer enough to be used in g *

: o 3Y's
particle discrimination (f
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Ortho-positronium formation (in matter)

direct
annihilation

Positronium Properties SHES e R

= In matter, ortho-positronium
(o-Ps) lifetime is quenched
and its formation probability B.R. 75%
changes

B.R. 25%

. : para-Positronium
ortho-Positronium (p-Ps)

In the JUNO liquid scintillator, (o-Es) . —

the lifetime of the o0-Ps (TOta'Sr))inﬂ t (vacuum) = 125 ps
T (vacuum =142 ns

becomes 3.08ns

The o0-Ps formation in the Matter effects
liquid scintillator is expected Chermical Reactions,
. Spin Flip, Pick-off
in 50% of cases

2x511 keV y's
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Treatment and analysis of
the photo-electron hit time
distribution

Discrimination methods

12




Electron/Ortho-positronium temporal distribution

— Si ion: &' @3 MeV center

—_— i

> For each event, the photo-electrons received by zoo§
the PMTs will be used to reconstruct the position o
vertex and get the time distribution of hits oy | sl ety

> The time distribution takes several nanoseconds
due to the light emission time profile of the liquid
scintillator

A P TN Mo me = t ey
0 10 20 30 40 50 60 70 80 90

Time (ns)

Simulation: e*@3 MeV center

> Concerning the o-Ps, the photo-electrons from -
the annihilation will be delayed inducing another
peak in the ionisation peak’s tail

—— lonisation

ihilation, At=10.3 ns

20011

positron at center
150 " with positronium

> Particle discrimination methods can be applied to T formation
the time distribution of certain events oo Ty Ty

50

~ster 2 Defense - HAMO 13




Discrimination methodology

To study the ortho-positronium discrimination, we used :
e A sample of identical positrons without o-Ps formation
e A sample of positrons with o-Ps formation with a lifetime of 3.08ns

[ Hit time distribution for 3000 o-Ps and non-Ps events |
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Discrimination methodology

To study the ortho-positronium discrimination, we used :

A sample of identical positrons without o-Ps formation
A sample of positrons with o-Ps formation with a lifetime of 3.08ns

/

\

~
[ Hit time distfBution for 3000 o-Ps and non-Ps events |
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Qtail/Qtot and Max/Qtot methods

Discrimination methods

o Qta”/Qtot method : Take the ratlo Of the :it time distribution ortho-positronium and non-positronium events
number of hits in the tail to the total number B OE___ iEpomimionn
of hits s
é _
e Max/Qtot method : Take the maximum of the §‘°5§_
signal over the total number of hits -
10* =
-> Given the temporal distribution event per event, both
ratio should be different sl

1 1 1 L l : 1 1 1 1 l 1 L 1 l 1 1 l 1 1 1 L
0 100 200 300 400 500
tp Time (ns)
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Qtail/Qtot and Max/Qtot methods

Distribution of Qtail/Qtot and Max/Qtot :
> Discrimination of o-Ps appears

ones (left- right- tailed hypothesis test)

> Different distribution shape because of the differents annihilation delay time of o-Ps events
> ltis possible to discriminate 0-Ps events admitting a certain tolerance of non-positronium

| Qtail/Qtot histogram for 3000 o-Ps and non-positronium events |

Max/Qtot histogram for 3000 o-Ps and non-positronium events
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Qtail/Qtot and Max/Qtot methods

>
>
>

Distribution of Qtail/Qtot and Max/Qtot :

Discrimination of o-Ps appears

Different distribution shape because of the differents annihilation delay time of o-Ps events
It is possible to discriminate o-Ps events admitting a certain tolerance of non-positronium

ones (left- right- tailed hypothesis test)

| Qtail/Qtot histogram for 3000 o-Ps and non-positronium events |
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Treatment and analysis of
the photo-electron hit time
distribution

Electronics impact
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Discrimination methodology

To study the ortho-positronium discrimination, we used :
e A sample of identical positrons without o-Ps formation
e A sample of positrons with o-Ps formation with a lifetime of 3.08ns

- S

[ Hit time distribution for 3000 o-Ps and non-Ps events |
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Dark noise and Transit time spread effects

l Qtail/Qtot histogram for 1000 events with electronics effect |
Comparing the different discrimination methods for events - s e
with full electronics simulation at the same energy (2MeV): P i s
o
-> There is a sharp decrease in the discrimination rate mainly due to “F —
the TTS effects E ” r—
20; J\I Wean 06456
. o . 10; v StdDev  0.0313
- The Max/Qtot method is more efficient than the Qtail/Qtot for o pa b i O
. . . 0.55 0.6 0.65 0.7 0.75 0.8
electronics simulation Gtal ot
Max/Qtot histogram for 1000 events with electronics effect |

—— non-Ps events
0-Ps events
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Dark noise and Transit time spread effects

the TTS effects

electronics simulation

Comparing the different discrimination methods for events
with full electronics simulation at the same energy (2MeV):

-> There is a sharp decrease in the discrimination rate mainly due to

- The Max/Qtot method is more efficient than the Qtail/Qtot for

Simulation 2 MeV

Qtail/Qtot method :

2.

5% of non-Ps
tolerance

Max/Qtot method :
2.5% of non-Ps
tolerance

l Qtail/Qtot histogram for 1000 events with electronics effect |
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Dark noise and Transit time spread effects

l Qtail/Qtot histogram for 1000 events with electronics effect |
Comparing the different discrimination methods for events § - ey
with full electronics simulation at the same energy (2MeV): P i s
o
-> There is a sharp decrease in the discrimination rate mainly due to “F —
the TTS effects ¥ ” r—
20; J\I Wean 06456
. . . i 10:_ v Std Dev 0.0313
- The Max/Qtot method is more efficient than the Qtail/Qtot for o pa b i O
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Reduction of TTS through PMTs selection

The TTS is the main reason for the fall in the discrimination rate

M Selection of small PMTs and Hamamatsu PMTs which have the smallest TTS

Simulation 2 MeV (with time of flight

Qtail/Qtot method :
2.5% of non-Ps

Max/Qtot method :
2.5% of non-Ps

Hamamatsu PMTs (3000 evts)

fecunpbruction) tolerance tolerance
Electronics simulation (3000 evts) (9.0 £0.6)% (18.2 £ 0.8)%
Electronics simulation with small and (8.2 4+ 0.5)% (6.6 % 0.5)%

photo-electrons collection

> The efficiency of discrimination of 0-Ps events is dominated by the

20




Treatment and analysis of
the photo-electron hit time
distribution

Energy impact
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Energy impact (optical simulation)

Comparing the different discrimination methods for different incoming
energy (2MeV, 5MeV, 10MeV) corresponding to antineutrino energy from
reactor source:

-> There is a decrease in the discrimination rate due to the temporal 250
distribution of photo-electron from ionisation

T T 7T

200

- We loose ~20% of the discrimination rate between 2MeV and 10MeV |
for the G4 with optical simulation

I

T T [ T T 17T

100

Optical simulation

Qtail/Qtot method :

2.5% of non-Ps

tolerance

Max /Qtot method :

2.5% of non-Ps
tolerance

2 MeV (3000 evts)

(711.2+£1.6)%

(52.2 £ 1.3)%

5 MeV (3000 evts)

(61.8 +£1.4)%

(48.0+1.3)%

10 MeV (1000 evts)

(48.6 +2.2)%

(29.7 + 1.1)%

50

lonisation

Annihilation, At=10.3 ns

" @3 MeV center

positron at center
with positronium

formation
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Energy impact (electronics simulation)

Applying the different methods after electronics simulation:

- Max/Qtot start to be limited to form pure sample and those of Qtail/Qtot are much less so

- Max/Qtot method remains better than the Qtail/Qtot method regardless of the positron incoming energy

Electronics simulation

Qtail/Qtot method :
2.5% of non-Ps

Max/Qtot method :
2.5% of non-Ps

tolerance tolerance
2 MeV (3000 evts) (9.0 +0.6)% (18.2 +0.8)%
5 MeV (3000 evts) (9.3 +0.6)% (14.0+0.71%
10 MeV (1000 evts) (7.4+£0.9)% (10.6 £ 1.0)%
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Results and
discussion
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Results

All the previous analysis enabled us to characterise the noise and see the limits of our discrimination methods :
> Simulation at the center of the detector

->  What can we expect for JUNO experiment (2MeV, 5MeV):

> Simulation uniformly distributed in the sphere taking into account the time of flight computed with

reconstructed vertices

> Max/Qtot method remains the more efficient but does not allow to form a very pure sample

Electronics simulation (uniform
vertex distribution)

Qtail/Qtot method :
2.5% of non-Ps

Max /Qtot method :
2.5% of non-Ps

tolerance tolerance
2 MeV (6000 evts) (10.4 + 0.4)% (15 1=t 0,5)(7(
5 MeV (6000 evts) (9:1.k 0.4)% (11.6 + 0.4)%
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Results

We wanted to characterise the most discriminating events:

-> See the correlation between the Max/Qtot and Qtail/Qtot value
in function of the annihilation delay time At of o-Ps events

e All 0-Ps events should have a At > Tns to be discriminated
at 3o for both methods

e All events with At > 16ns will be discriminated by
Qtail/Qtot at 30

e All events with At > 23nswill be discriminated by
Max/Qtot at 3o

| atalvatot value according to the time of o-Ps metastable state |
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Results

| Qtail/Qtot value according to the time of o-Ps metastable state

Qtail/Qot
s N
=y

[ parametersi |
Entries 5438
Mean 3.229
Meany 0.6264
Std Dev 3.071
StdDevy 0.01924

coon L L L

L P T TS T S M AR
0 5 10 15 20 25

P
30 35

Time of 0-Ps metastable state (ns)

| Max/Qtot value according to the time of o-Ps metastable state

Entries 5438

Mean 3.229
Mean y 0.04065
Std Dev 3.071
Std Dev y 0.003089

For sMeV

e All o-Ps events should have a At > 9ns to be
discriminated at 3¢ for both methods

e |t is difficult to know whether there is a At limit value above
which all events are discriminated

0.025

35
Time of o-Ps metastable state (ns)

The loss of discrimination rate between 2MeV and 5MeV corresponds to
the number of 0-Ps events with a At between 7ns and 9ns

>  48% of the 0-Ps events with At > 7ns is lost
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Discussion

JUNO is expected to detect around 60 V. /day from the reactors

e 50% of ortho-positronium
e Assuming they have energy of around

2MeV
e At > 16nsto be discriminated at 30

N

A sample of 1000 events with an antineutrino purity greater than
94% would require more than 16 years

28




Conclusion
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Conclusion

The objective of the internship was to study the background for the JUNO experiment:

e Focusing of the 0-Ps metastable state we have been able to develop 2 discrimination methods to
distinguish the background from the antineutrino signals

e These methods used for optical simulation first enabled us to understand the physics inside JUNO'’s
liquid scintillator before seeing the impact of the electronics

e Analysis showed us that the formation of a pure sample of 0-Ps by our methods depends mainly on
the TTS of the PMTs

e Avery pure sample of 0-Ps events using our methods for the JUNO experiment is complicated (more
than 16 year to form a sample of 1000 events with a purity of antineutrino higher than 94%)

30
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Qtail and Qtot windows optimisation

T76 078 08 082 084 086 088

Qtail/Qtot

. . . . . Hit time distribution ortho-positronium and itronium events |
The rate of ortho-positronium discriminated out of . R
the gaussian can be optimized : - Max e |
g L
E
- For Qtail/Qtot : changing the starting time chosen = 3
for the Qtail integration window [
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Qtail and Qtot windows optimisation
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Qtail and Qtot windows optimisation

| of events with Qtail/Qtot according to Qtail window
. . . . . . g 80:_ ‘ with 5% non-Ps tolerance
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Dark noise and Transit time spread effects

the TTS effects

electronics simulation

Comparing the different discrimination methods for events
with full electronics simulation at the same energy (2MeV):

-> There is a sharp decrease in the discrimination rate mainly due to

- The Max/Qtot method is more efficient than the Qtail/Qtot for

l Qtail/Qtot histogram for 1000 events with electronics effect |
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Max/Qtot histogram for 1000 events with electronics effect |

Simulation 2 MeV

Qtail/Qtot method :
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Max/Qtot method :
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