

CRCE

Characterization of the proton beam at Cyrcé cyclotron using MIMOSIS-1 sensor

M2 PSA internship Tabatha DUFOUR

supervised by Marc ROUSSEAU (DRHIM) and Ziad EL BITAR (PICSEL)

Context

Experiment & methods

Results and Analysis

Discussion and Conclusion

Context of the internship

IPHC								
Hadrontherapy (DRHIM)	PICSEL							
Hadrontherapy	Physics with Integrated Cmos Sensors and ELectron machines							
treatment plans in hadrontherapy - Cyrcé Platform	Development and optimization of monolithic active pixel sensors - vertexing - tracking							

Problematic : Characterization of the proton beam at Cyrcé cyclotron using MIMOSIS-1 sensor

Hadrontherapy and DRHIM

• Radiotherapy

- X-ray: common source, deposited dose is spread out
- Protons: stop at their target (200 MeV proton in water \rightarrow Bragg peak \approx 25 cm deep)
- Effects of radiation protons need further investigation to ensure control of the dose deposit

Figure from ref. [1]

Hadrontherapy and DRHIM

- **Dose :** amount of energy deposited by unit mass
- LET: energy transferred locally by the particle to the material per unit length
- *Fluence* : Number of particle per unit surface

CBM and PICSEL

MIMOSIS-1

Monolithic Active Pixel Sensors (MAPS) in Complementary Metal-Oxide-Semiconductor (CMOS) technology

Designed and tested by the laboratory's microelectronics platform: C4PI (Centre de Compétence de Capteurs CMOS à Pixels Intégrés)

Carried by **PICSEL**

Physics parameter	Poquiromento
Fliysics parameter	Requirements
Spatial resolution	~ 5 um
Time resolution	~ 5 us
Material budget	0.05% X ₀
Power consumption	< 100 – 200 mW/cm ²
Operation temperature	- 40 °C to 30 °C
Temp gradient on sensor	5К
Radiation (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²
Radiation (ionizing)	~ 5 MRad
Data flow (peak hit rate)	@ 7 x 105 / (mm²s) > 2 Gbit/s

- Compressed Baryonic Matter at future Facility for Antiproton and Ion Research in Darmstadt Germany
- High density region of QCD phase diagram

Description of the MIMOSIS-1 sensor

Description of cyclotron of Cyrcé platform and its beamlines

Figure from ref. [5]

Precy beamline : Transverse beam profile

Description of the experiment

Collimator scan \rightarrow Fluence characterization Diameter : 2, 3, 5, 8, 10, 12, 15, 16.5 and 24 mm

Description of the experiment

5

Distance scan \rightarrow Dispersion characterization Distance: 14, 60, 110 and 162 mm

Description of the experiment

5 µs

Clusterisation

Map of pixels (Binary output) for 1 frame

Clusterisation

Map of pixels (Binary output)

TAF : Telescope Framework Analysis (*Ref.* [7])

 \rightarrow created and managed by IPHC to characterize CMOS pixel and strip sensors

Hit Maps for different collimators diameter

Motivation: Localized and controlled irradiation

21

Comparison of 2 measurements of intensity

Collimator diameter [mm]	2	3	5	8	10	12	15	16,5	18	24
I measured in Faraday cup [fA]	250	253	252	253	251	253	254	250	250	251
a (geometrical factor)	0,0116	0,0258	0,0705	0,1778	0,2814	0,3977	0,2249	0,2709	0,3222	0,5693
I expected [fA]	2,90	6,53	17,77	44,98	70,63	100,62	57,12	67,73	80,55	142,89

Hit Maps and intensity comparison

Collimator diameter [mm]	2	3	5	8	10	12	15	16,5	18	24
I measured in Faraday cup [fA]	250	253	252	253	251	253	254	250	250	251
a (geometrical factor)	0,0116	0,0258	0,0705	0,1778	0,2814	0,3977	0,2249	0,2709	0,3222	0,5693
I expected [fA]	2,90	6,53	17,77	44,98	70,63	100,62	57,12	67,73	80,55	142,89
Number of hits	441897	923633	2095225	5181738	9208285	7374390	3187467	3585974	3575492	1988380
Number of read frames	4659001	4637003	3597003	3472001	4125003	2199896	3839003	4339001	4358002	2411679
I measured from Hit Map [fA]	3,04	6,37	18,64	47,76	71,43	107,27	59,78	72,00	85,06	151,97
Error between measured and expected	4,66%	-2,35%	4,92%	6,17%	1,14%	6,61%	4,65%	6,31%	5,60%	6,35%

Profiles in fluence (Y)

Collimator diameter [mm]	2	3	5	8	10	12
Theoretical fluency [cm ⁻²]	1,34E+07	1,34E+07	1,02E+07	9,71E+06	1,16E+07	6,12E+06
Experimental mean of fluency [cm ⁻²]	1,39E+07	1,30E+07	1,06E+07	1,02E+07	1,14E+07	6,39E+06
δ (theoretical - experimental mean) [cm ⁻²]	-4,92E+05	3,61E+05	-4,45E+05	-5,38E+05	2,02E+05	-2,71E+05
Standard deviation [cm ⁻²]	3,02E+05	3,29E+05	2,80E+05	2,62E+05	2,89E+05	6,04E+10

Dispersion as function of distance

Dispersion as function of distance

$$erf(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_0^x e^{-\left(\frac{1}{2}\frac{x'-\mu}{\sigma}\right)^2} dx$$

Distance (mm)	14	60	110	164
σ (mm)	0,10	0,37	0,75	1,20
Reconstructed diameter μ 2- μ 1 (mm)	10,07	10,10	10,20	10,10
Uncertainty on diameter (mm)	0,11	0,17	0,22	0,28

Mean fluence (cm ⁻²)	1,64E+06	1,54E+06	1,49E+06	1,35E+06
Standard deviation (cm ⁻²)	1,16E+05	1,10E+05	1,06E+05	1,14E+05

Dispersion as function of distance

Distance (mm)	14	60	110	164
σ (mm)	0,10	0,37	0,75	1,20
μ1 (mm)	-5,05	-5,10	-5,10	-5,10
μ2 (mm)	5,02	5,00	5,10	5,00
Reconstructed diameter (mm)	10,07	10,10	10,20	10,10
Uncertainty on diameter (mm)	0,11	0,17	0,22	0,28

Comparison between dose and fluence

REFERENCES

- [1] Hiroki Shirato. Spearheading global fight against cancer with proton therapy. Vol.2 New Era of Radiation Therapy to Fight Cancer, October 2020.
- [2] Gert Aarts, Felipe Attanasio, Benjamin Jäger, Erhard Seiler, Dénes Sexty, and Ion-Olimpiu Stamatescu. Qcd at nonzero chemical potential: recent progress on the lattice. December 2014.
- [3] Yue Zhao. Radiation hardened design of CMOS pixel sensor for the microvertex detector of the CBM experiment. PhD thesis, Physics [physics]. Université de Strasbourg. English. NNT : 2021STRAE010. tel-03284188, 2021.
- [4] Roma Bugiel. Latest results from mimosis-1. 41st CBM Collaboration Meeting in Darmstadt, march 2023.
- [5] Cyrcé platform website. https://cyrce.fr/en/home/.
- [6] Marc Rousseau. Private communication, May 2023.

- Jerôme Baudot. Taf short manual. Université de Strasbourg, IPHC, CNRS, UMR7178, https://github.com/zelbitar/taf.git,, December 2020.
- [8] Julie Constanzo, Marie Vanstalle, Mathieu Guillot, Marc Rousseau, and Christian Finck. Characterization of a cmos sensor array for small field fluence measurement of a low energy proton beam. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 910:1–8, 2018.
- [9] D.E. Groom and S.R. Klein. Particle Data Group. Chapter 34. Passage of Particles through Matter. August 2021.
- [10] P. Allport, F. Bögelspacher, K. Bruce, R. Canavan, A. Dierlamm, L. Gonella, P. Knights, I. Mateu, M. Moll, K. Nikolopoulos, B. Phoenix, T. Price, L. Ram, F. Ravotti, C. Simpson-Allsop, and C. Wood. Experimental determination of proton hardness factors at several irradiation facilities. *Journal of Instrumentation*, 14(12):P12004, dec 2019.
- [11] M. Huhtinen and P.A. Aarnio. Proton induced displacement damage in silicon. https://rd50.web.cern.ch/NIEL/protons.pdf, 1993.

Values from ref. [10]

Difference LET and stopping power

- Stopping power: energy loss by the particle (in the matter),
- LET : energy transferred locally by the particle to the material per unit length.

$$\text{LET} = \left(\frac{\text{dE}}{\text{dx}}\right) - \sum E_c(e_{\delta}).$$

kinetic energies of the δ electrons having an energy higher than a threshold

For protons:

$$\sum E_c(e_\delta) \approx 0 \Rightarrow \text{LET} \approx \left(\frac{\text{dE}}{\text{dx}}\right)$$

NIEL factor

- Non-ionizing doses calculated by means of the NIEL (Non-Ionizing Energy Loss) factor,
- Normalizes the radiation damage caused by 1 MeV neutrons.
- Goal: Inter-facility comparison and collaboration.
- Derived by evaluating the leakage current in the bulk of a silicon sensor.
- For 25 MeV protons in Silicon: the NIEL factor is 2.558.

CBM and PICSEL

- STS : Silicon Tracking System
- RICH : Ring Imaging Cherenkov detector
- TRD : Transition Radiation Detectors
- MUCH : MUon tracking CHamber
- TOF : Time-Of-Flight detector
- ECAL : Electromagnetic Calorimeter
- PSD : Projectile Spectator Detector

Requirements:

Charm meson can't reach detector ($cT(D^0) = 123 \mu m$) \Rightarrow Spatial resolution Rare probe \rightarrow high intensity \Rightarrow Radiation resistant

Description of the MIMOSIS-1 sensor

Description of the sensor

<u>N region :</u> excess of electrons (on the valence band) <u>P region :</u> lack of electrons, or holes <u>PN junction:</u> electrons and holes recombine -> no free charges (depletion zone) -> barrier for charge carriers

Electrons flow from the n-type side to the p-type side, Reduce the depletion region increase the flow of current

Increases the depletion region Restrict the flow of current

<u>PN junction</u> create a depletion zone (and therefore an electric field) to limit recombination when a charged particle passes through. Electron-hole pairs are collected easily by the detector's electrodes when the material is ionized.

Description of the sensor

Figure from ref. [4]

MIMOSIS timeline

Figure from ref. [10]

MIMOSIS requirements

Physics parameter	Requirements
Spatial resolution	~ 5 um
Time resolution	~ 5 us
Material budget	0.05% X ₀
Power consumption	< 100 – 200 mW/cm ²
Operation temperature	- 40 °C to 30 °C
Temp gradient on sensor	5К
Radiation* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²
Radiation* (ionizing)	~ 5 MRad
Data flow (peak hit rate)	@ 7 x 105 / (mm²s) > 2 Gbit/s

* without safety factor

Goals of the experiment

Efficiency as a function of the threshold

- \rightarrow different matrices
- \rightarrow different back-bias

Bandwidth saturation (number of events the sensor is able to process) as a function of the beam intensity.

Check the performances of the sensors under non uniform high rate radiation which is expected in the CBM experiment.

Determine the profile in fluence of the beam

- better qualify the sensors
- choose the best parameters for the final version of the MIMOSIS

 better understand the deposited dose for radiobiology applications

29 19

Description of the other experiments

Change of threshold

<u>Threshold</u>: minimum number of electrons detected to interpret it as a signal

high threshold \rightarrow some events can be missed. low threshold \rightarrow noise can be interpreted as signal.

Goal: analyse the efficiency as a function of this threshold.

<u>Reference planes:</u> threshold is 120 electrons (e-) <u>**DUT:**</u> measurements at 90 e-, 120 e-, 150 e-, 200 e-, 240 e-

<u>Scan:</u>

for each split (1, 3 and 4). for back bias on the DUT at -1 V and -3 V for matrix B and matrix C.

VCASN values for threshold

	Chip 23 split		plit 1		Plan references	Chip 24 (Vcasn2 = 110)	0) Chip 29 (Vcasn2 = 110)	Chip 30 (Vcasn2 = 110)	Chip 31 (Vcasn2 = 120)
	-1V (Vo	lip = 55)	-3V (Vclip	= 75)	120e	115 / 120 / 113 / 105	90 / 115 / 120 / 90	100 / 113 / 108 / 95	120 / 130 / 135 / 130
	В	С	В	C	-1V Back Bias				
70e	163	165	220	230	10V High Voltage				
80e	153	155	210	220					
90e	143	145	200	210					
120e	128	131	179	187					
150e	113	114	152	160					
200e	104	104	145	146					
240e	102	100	141	142					
		Chip 19 s	plit 3						
	-1V (Vo	lip = 55)	-3V (Vclip	= 75)					
	В	С	В	C					
60e		140	197	203					
70e		130	190	194					
80e		120	183	185					
90e	124	110	176	176					
120e	113	100	157	153					
150e	101	94	136	136					
200e	87	88	132	130					
240e	85	86	128	126					
		Chip 26 s	plit 4						
	-1V (Vo	lip = 55)	-3V (Vclip	= 75)					
	В	C	B	C					
90e	131	113	172	161					
120e	116	98	150	141					
150e	104	93	132	126					
200e	91	88	120	118					
240e	88	86	117	115					
	Chin 34 Back Bi	as _1V							
	A	98 (187e)							
	В	123 (192e)							
	C	127 (185e)							
	D	107 (183e)							

Description of the other experiments

Intensity scan

<u>Goal:</u> observe bandwidth saturation effect.

<u>DUT</u>: measurements from 18 to 2876 fA, (0.1 to 20 MHz/cm2).

<u>Scan:</u>

for split 1 and 3 for back bias on the DUT at -3 V for matrix B and matrix C.

Description of the other experiments

Irradiation resistivity

<u>Goal</u>: reproduce non-uniformity of MVD irradiations \rightarrow localized irradiations at high rate (fluence of 10^{13} and 10^{14} neq / cm²)

Long irradiation time (1h20) \rightarrow profile of the beam can vary

Irradiation configuration

Irradiation configuration

Profiles in fluence (X)

70 µm

537 µm								v		
Run Number	23334	23335	23336	23337	23338	23339	23340	23341	23342	23343
Collimator diameter [mm]	2	3	5	8	10	12	15	16,5	18	24
Theoretical fluency [cm ⁻²]	1,34E+07	1,34E+07	1,02E+07	9,71E+06	1,16E+07	6,12E+06	3,94E+06	4,38E+06	4,39E+06	2,40E+06
Experimental mean of fluency [cm ⁻²]	1,38E+07	1,29E+07	1,05E+07	1,02E+07	1,13 <mark>E+</mark> 07	6,41E+06	4,06E+06	4,57E+06	4,56E+06	2,54E+06
δ (theoretical - experimental mean) [cm^2]	-3,46E+05	4,62E+05	-3,66E+05	-4,48E+05	2,82E+05	-2,89E+05	-1,20E+05	-1,95E+05	-1,72E+05	-1,45E+05
Standard deviation [cm ⁻²]	2,26E+05	2,17E+05	2,58E+05	2,60E+05	2,73E+05	1,88E+05	1,54E+05	1,69E+05	1,67E+05	1,30E+05

X profiles for different collimators

Figure F.2: X profile for different collimator diameters for bandlenght of 537 μ m.

X profiles for different collimators

Figure F.1: X profile for different collimator diameters for bandlenght of 71 μ m.

Y profiles for different collimators

Figure F.3: Y profile for different collimator diameters for bandlenght of 537 μ m.

Profiles in fluence: X and Y comparison

Run Number	23334	23335	23336	23337	23338	23339	23340	23341	23342	23343
Collimator diameter [mm]	2	3	5	8	10	12	15	16,5	18	24
Theoretical fluency [cm ⁻²]	1,34E+07	1,34E+07	1,02E+07	9,71E+06	1,16E+07	6,12E+06	3,94E+06	4,38E+06	4,39E+06	2,40E+06
Experimental mean of fluency [cm ⁻²]	1,38E+07	1,29E+07	1,05E+07	1,02E+07	1,13E+07	6,41E+06	4,06E+06	4,57E+06	4,56E+06	2,54E+06
δ (theoretical - experimental mean) [cm^2]	-3,46E+05	4,62E+05	-3,66E+05	-4,48E+05	2,82E+05	-2,89E+05	-1,20E+05	-1,95E+05	-1,72E+05	-1,45E+05
Standard deviation [cm ⁻²]	2,26E+05	2,17E+05	2,58E+05	2,60E+05	2,73E+05	1,88E+05	1,54E+05	1,69E+05	1,67E+05	1,30E+05

Run Number	23334	23335	23336	23337	23338	23339
Collimator diameter [mm]	2	3	5	8	10	12
Theoretical fluency [cm ⁻²]	1,34E+07	1,34E+07	1,02E+07	9,71E+06	1,16E+07	6,12E+06
Experimental mean of fluency [cm ⁻²]	1,39E+07	1,30E+07	1,06E+07	1,02E+07	1,14E+07	6,39E+06
δ (theoretical - experimental mean) [cm ⁻²]	-4,92E+05	3,61E+05	-4,45E+05	-5,38E+05	2,02E+05	-2,71E+05
Standard deviation [cm ⁻²]	3,02E+05	3,29E+05	2,80E+05	2,62E+05	2,89E+05	6,04E+10

Error between X and Y	1,05%	0,78%	0,74%	0,88%	0,70%	-0,28%

Profiles in fluence: distance scan intensity

Distance (mm)	14	60	110	162
Run Number	23210	23159	23157	23155
Collimator diameter [mm]	10	10	10	10
I measured in Faraday cup [fA]	63	60	60	60
a (geometrical factor)	0,2879	0,2879	0,2879	0,2879
I theoric [fA]	18,14	17,27	17,27	17,27
I theoric [fA] Number of hits	18,14 1311678	17,27 1242447	17,27 1240637	17,27 1149329
I theoric [fA] Number of hits Number of read frames	18,14 1311678 2229622	17,27 1242447 2188187	17,27 1240637 2185496	17,27 1149329 2175707
I theoric [fA] Number of hits Number of read frames I measured from Hit Map [fA]	18,14 1311678 2229622 18,83	17,27 1242447 2188187 18,17	17,27 1240637 2185496 18,17	17,27 1149329 2175707 16,90

Gafchromic calibration

F.2 Dose and fluence comparison

Figure F.4: Comparison of x profile of the beam in fluence and in dose for all collimators. The dose and fluence have been normalized.