Faculté	de Physique et Ingénierie	
Uni	versité de Strasbourg	

Search for exotic, massive, stable and electrically charged particles in the CMS experiment

Under the supervision of C. Collard

Gaël COULON

General overview

Theoretical and experimental context

Search for exotic particles in CMS Pile-up Experimental signature

<u>Problematic</u> Study of the impact of pile-up on the measurement of energy clusters

Search for signal, and pile-up issue

Impact of pile-up on the energy estimator Filtering algorithm

Work done

Study of the ratio of simulated charges Cut-off efficiency

Standard Model and search for exotic particles

Standard Model

Theory describing elementary particles and their interactions.

Limits

- Unexplained dark matter
- Matter-antimatter asymmetry

Theory beyond the Standard Model

• New interactions, symmetries, particles ..

<u>Properties</u> : mass, charge, lifetime, ...

Heavy Stable Charged Particles

$$1 arrow 1 arrow 1$$

 $\tau > 30 ext{ ns}$
 $m > 200 ext{ GeV/c^2}$ $Q = e$

 $\underline{ex}: \mbox{R-hadron obtained from a gluino <math display="inline">\tilde{g}$ at m=2 $\mbox{TeV/c}^2$

Standard Model and search for exotic particles

Standard Model

Theory describing elementary particles and their interactions.

Limits

- Unexplained dark matter
- Matter-antimatter asymmetry

Theory beyond the Standard Model

• New interactions, symmetries, particles ..

```
Properties : mass, charge, lifetime, ...
    Heavy Stable Charged Particles
\tau > 30 \text{ ns}
m > 200 GeV/c<sup>2</sup>
     ex: R-hadron obtained from a
     gluino\tilde{g} at m=2 TeV/c²
            Looks like a muon at
                first order
      m = 105 \text{ MeV/c}^2 \tau = 2.2 \ \mu s
```


LHC, CMS and the tracker

Area of interest for my internship : $|\eta| < 0.8$ (TIB+TOB)

Gaël COULON

Pile-up

Example of a beam crossing CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-14 09:56:16.733952 GMT Run / Event / LS: 283171 / 142530805 / 254

Pile-up

Many additional proton-proton interactions are superimposed in the detector when beams cross.

Signature: highly ionizing particles

Search for signatures of stable particles with high momentum and high mass.

Larger energy deposit (non-relativistic part of the Bethe-Bloch curve).

Gaël COULON

Gaël COULON

For <u>all</u> clusters

Measure pile-up ?

Take a look of the R_Q ratio between $\sum Q_{sum}$ and $\sum Q_{muon}$

 \rightarrow There are simulated charge Q_{sum} bigger than they should be.

Gaël COULON

Search for exotic, massive, stable and electrically charged particles in the CMS experiment

14/20

clusclean filtering algorithm

The search for strong ionization left by HSCPs requires a filtering algorithm to reject abnormally shaped clusters.

To be retained, clusters must comply with :

- presence of a single maximum
 symmetrical spread
 thresholds not to be exceeded for tracks neighbouring the maximum (size as a percentage of the maximum and other neighbours)

• *clusclean* function

For clusters selected by clusclean

• The ratio for all clusters is **3 to 5 times higher** than those kept by *clusclean* above $R_Q = 2.5$

Gaël COULON

For clusters selected by clusclean

~14 clusters/tracks \rightarrow ~13 pass the *clusclean* algorithm (6.8% removed)

> Allure of I_h broadly unchanged with or without pile-up: *clusclean* is efficient, except for high I_h values.

Cut-off efficiency

- Slope reduction with the $R_Q < 1.24$ cut: 12.5 (without *clusclean*) and 6.5 (with *clusclean*).
- Less reduction than in the case without *clusclean*: expected, since *clusclean* already removes a large proportion of clusters such as $R_Q > 1.24$.

Gaël COULON

Outlook

There are still abnormal clusters passing *clusclean*, that should not:

- work on the case of **saturated clusters**
- more effective cut-off on the first layers

Gaël COULON

Conclusion

- We are searching for a class of particles: high mass and long lifetime.
 → Experimental signatures: high ionization in the tracker.
- Demonstration of the increasing dependency between ionization (track energy estimator I_h) and pile-up.
- **Pile-up** study on abnormal energy deposits.
- Quantification of these deposits using the $R_Q = \frac{\sum Q_{sum}}{\sum Q_{muon}}$ ratio, impact on the tail of the mean deposited energy I_h estimator.
 \rightarrow High R_Q values lead to large I_h values.
- The *clusclean* algorithm needs to be improved to remove cases of large deposits that ! are abnormal and make the I_h estimator robust to pile-up.

CMS detector

CMS tracker

Gaël COULON

particles.

Example of a single event in CMS

Gaël COULON

Pile-up in the CMS detector over time

Gaël COULON

Supersymmetry

Gluino: signal étudié ici

Extension of the MS, introducing a spin symmetry.

- Propose a **candidate for dark matter**: the lightest and most stable supersymmetric particle (neutralino).
- Unification of interactions beyond $10^{16}~{\rm GeV}.$

Gaël COULON

Interest of HSCP research

Search for neutralino $\tilde{\chi}^0$, from a gluino \tilde{g} , by different experimental means: the HSCP search (orange dot) leads to the highest exclusion of mass and lifetime for the gluino.

Gaël COULON

Example of HSCP production

• <u>Split SUSY</u>

$$\tau[s] \simeq 8 \left(\frac{m_{\tilde{q}}}{10^9 \,\mathrm{GeV/c^2}}\right)^4 \left(\frac{10^3 \,\mathrm{GeV/c^2}}{m_{\tilde{g}}}\right)^5$$

Decay through $\mathbf{virtual}\ \mathbf{squark}\ \mathrm{at}\ \mathrm{high}\ \mathrm{mass}$

$$\underline{ex}$$
: τ ≥ 100 ns and $m_{\tilde{g}} = 2000 \text{ GeV}/c^2$
→ $m_{\tilde{q}} \gtrsim 2 \cdot 10^8 \text{ GeV}/c^2$

Gaël COULON

Summary of current HSCP results

Gaël COULON

Search for exotic, massive, stable and electrically charged particles in the CMS experiment

1500

Mass (GeV)

Bethe-Bloch formula

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

$$\beta = \frac{v}{c} \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$
$$\beta \gamma = \frac{p}{Mc} \qquad M > m_e$$

K: constant z: algebric charge of the particle A: atomic number of the material crossed Z: mass number of the material crossed

 W_{max} : maximum of energy transferred in a single collision

 \boldsymbol{I} : mean excitation energy of the material

 $\pmb{\delta}$: ultra-relativist correction

Gaël COULON

Sources of contributions to large I_h values

Gaël COULON

Energy deposit

Gaël COULON

One or many strips hit

Cross-talk phenomenon (charge spreading due capacitive to coupling between strips)

Gaël COULON

- One or many strips hit
- **Cross-talk** phenomenon (charge spreading due to capacitive coupling between strips)

Cross-talk inversion algorithm

Gaël COULON

342

344

346

348

350

340

Gaël COULON

- I_h only for tracks for which at least one cluster has an $R_Q > 1.24$.
- Reduced number of entries: 190 000 (all tracks) to 110 000 (tracks that have at least one cluster with $R_Q > 1.24$), i.e. 60% of tracks have at least one deposit with a significant external contribution.

Gaël COULON

- Same entries reduction, but less this time: 35% of tracks have at least one deposit with a significant external contribution.
- The difference between the two curves is small, this shows: the efficiency of *clusclean* and most of the time, I_h calculated with *clusclean* filtering will still have at least one cluster with $R_Q > 1.24$.

Gaël COULON

LHC operating schedule

Gaël COULON