Structure and limits of the superheavy nuclear quantum building

Presentation : Martin BORDEAU Supervisor : Benoît GALL « From Nuclei to Stars » group

Wednesday 21st of June 2023 / Master 2 PSA

Outline

Study of ²⁵⁶Rf « high-K » isomers

- Goal: delayed spectroscopy of the superheavy nucleus of ²⁵⁶Rf
- Facilities : S³ and SIRIUS (EquipEX), GANIL, France (Caen)

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

Synthesis of the element Z=119

- Ongoing experience in RIKEN, Japan, through collaboration nSHE (« new Super Heavy Element »)
- Goal : First synthesis of the element with 119 protons, determination of its lifetime and mass

Synthesis of element 119 State-of-the-art

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

- What is the heaviest nucleus that can be created? How many elements are there?
- New evidence of the existence of the "island of stability"
- New anchor point for theory (constraints thanks to mass and life time)

Model	Ζ	Ν
Nilsson	114	184
Wood-Saxon	114	184
Wood-Saxon Universal	126	184
Hartree-Fock-Bogoliubov	126	184
Relativistic Mean Field	120	172

184

K. Kessaci, Thèse de l'Unistra (2021)

Synthesis of element 119

- 7th period completed \rightarrow Oganesson (Z=118)
- Chemistry of the nuclei g electronic layer?
- Not negligible relativistic effects from Z=112 \rightarrow what about the classification of the elements?

P. Jerabek *et al*. (2018)

Université

de Strasbourg

- 0.5

Synthesis of element 119 Experimental setup @ RIKEN, Japan

• Fusion-evaporation reaction :

 ${}^{51}V + {}^{248}Cm \rightarrow {}^{299-x} 119^* + xn$

• Production cross-section ~ fb !

Ι (pμΑ)	σ (fb)	Event every:
1	50	2 months
10	50	6 months
1	3	12 years
10	3	15 months
		10

 $(1 \mu A \approx 6 \times 10^{12} \text{ particles/s})$

GARIS II (separator) Cf. B. Gall

• High intensity

→ Superheavy factory: SRILAC, SHE factory, LINAG

 \rightarrow New separators : GARIS III, DGFRS II & III, S³

 \rightarrow isotopes known except Z=117 (Ts)

Synthesis of element 119 Experimental setup @ RIKEN, Japan

Detection system:

- Time of Flight detector (ToF)
- Double-sided silicon strip detector (DSSD) (reculs, e^- and α)
- non-pixelized silicon Tunnel (e^- and α)
- non-pixelized silicon VETO

ToF detector

Detection chamber

Internship: production of ^{257/258}Db Calibration of an experiment and search for α -decay chains

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

800
700
600
500
400
300
200
100

Internship: production of ^{257/258}Db de Strasbourg Calibration of an experiment and search for α -decay chains

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

12000 14000 Energy DSSD [keV]

10000

Internship: production of ^{257/258}Db de Strasbourg Calibration of an experiment and search for α -decay chains

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

$\rightarrow R\alpha RA\alpha A\alpha A\alpha AR\alpha A\alpha A\alpha RR\alpha A\alpha RA\alpha$

Internship: production of ^{257/258}Db Calibration of an experiment and search for α -decay chains

Data flow

- ⁵¹V +²⁰⁸ Pb \rightarrow^{259-x} Db + xn
- Filtering using ToF, QDC et VETO

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

8000

10000

12000

N.C.

ToF

9

10⁵

10⁴

10³

10²

16000

Energy

14000

$\rightarrow R\alpha R \alpha \alpha \alpha R\alpha \alpha A\alpha \alpha RR\alpha \alpha R \alpha$

Université

de Strasbourg

Internship: production of ^{257/258}Db

Calibration of an experiment and search for α -decay chains

de Strasbourg

²⁵⁷Db decay chain

Internship: production of ^{257/258}Db de Strasbourg Calibration of an experiment and search for α -decay chains

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

²⁵⁷Db decay chain

Internship: production of ^{257/258}**Db** Analysis of decay chains and delayed spectroscopy

 Reconstruction of decay 9500 Energy[keV] chains +8 • Delayed spectroscopy for 9000 Db, Lr, Md ²⁵⁷Db 1/2 [521] 9/2⁺[624] 8500 1/2 [521] 8000 9/2*[624] 7/2 [514] ²⁵³Lr 3 (1) Lr(2) 7500 9/2*[624] $^{249}Md \rightarrow ^{245}Es$ 1/2 [521] 7/2 [514] 7000 <u></u> 7500 ²⁴⁹Md

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

Study of ²⁵⁶Rf « high-K » isomers

- Metastable excited state of a nucleus
- SHE region \rightarrow "high-K" isomers
- \rightarrow Useful to probe the quantum structure of the nucleus

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

« high-K » isomers

- K: Projection of the total angular moment along the axis of deformation of the nucleus
- If $|\Delta K| > \lambda$ (Multipolarity of the transition), the transition is "forbidden" but possible decay by tunnel effect

Study of ²⁵⁶Rf « high-K » isomers

- Before 2011: several discordant delayed spectroscopy experiments
- 2011: experiments by IPHC and JYU physicists

50
Ti $+^{208}$ Pb \rightarrow^{256} Rf $+ 2n$

 \rightarrow low cross-section = 17 nb

 \rightarrow Important statistics with S³ separator and the SIRIUS detection system

J. Rubert, Thèse de l'Unistra (2013)

Martin BORDEAU - M2 PSA - Structure & limits of the superheavy nuclear quantum building - 21/6/2023

Backup slides

Reaction mechanisms.

21

Deformed nucleus

Figure 1.6: Schéma des orbitales des particules individuelles protons pour le noyau de ²⁵⁶Rf en fonction du coefficient de déformation quadrupolaire β_2 . Il a été calculé grâce au modèle "Woods-Saxon Universal" [Rou13]. Des gaps candidats superlourds sont situés à Z = 114 et à Z = 126. Par l'action de la déformation, les orbitales fermant ces gaps sont rapprochées de la surface de Fermi des noyaux transfermia.

Figure 1.6: Schéma des orbitales des particules individuelles protons pour le noyau de ²⁵⁶Rf en fonction du coefficient de déformation quadrupolaire β_2 . Il a été calculé grâce au modèle "Woods-Saxon Universal" [Rou13]. Des gaps candidats superlourds sont situés à Z = 114 et à Z = 126. Par l'action de la déformation, les orbitales fermant ces gaps sont rapprochées de la surface de Fermi des noyaux transfermia.

Desexcitation of a CN

Shell Model

prompte vs delayed Spectroscopy

SHE elements

2	Ζ	Ν	A	No. observed ^a	Decay mode, branch (%) ^{b,c}	Half-life ^c	E_{α} (MeV)	Q^{\exp}_{α} (MeV)	Refs.
1	118	176	294	d:4	α	$0.69^{+0.64}_{-0.22}$ ms	11.66 ± 0.06	11.82 ± 0.06	[71,73,74]
1	117	177	294	d:3, t:2	α	51^{+38}_{-16} ms	10.81-11.07	11.18 ± 0.04	[74,86–89]
		176	293	d:15	α	22^{+8}_{-4} ms	10.60–11.20	11.32 ± 0.05	[74,86–88]
1	116	177	293	d:4, s:1	α	57^{+43}_{-17} ms	10.56 ± 0.02	10.71 ± 0.02	[68–70,72]
		176	292	d:5, s:4	α	13_{-4}^{+7} ms	10.63 ± 0.02	10.78 ± 0.02	[70,72]
		175	291	d:3, s:1	α	19^{+17}_{-6} ms	10.74 ± 0.07 10.50 ± 0.02	10.89 ± 0.07	[49,71,72]
		174	290	d:11	α	$8.3^{+3.5}_{-1.9}$ ms	10.85 ± 0.07	11.00 ± 0.07	[49,71,73, 74]
1	115	175	290	d:4, t:2	α	650^{+490}_{-200} ms	9.78–10.31	10.41 ± 0.04	[74,86–89]
		174	289	d:16	α	330_{-80}^{+120} ms	10.15–10.54	10.49 ± 0.05	[74,80,81, 86–88]
		173	288	d:27, t:19	α	$164^{+30}_{-21} \text{ ms}$	10.29–10.58	10.63 ± 0.01 ≈ 10.7 [83]	[75,76,80,81, 83,84]
		172	287	d:2, t1	α	37^{+44}_{-13} ms	10.61 ± 0.05	10.76 ± 0.05	[75,76,81,83, 84]
1	114	175	289	d:10, s:1, t:4, tc:1	α	$1.9^{+0.7}_{-0.4}$ s	9.84 ± 0.02 9.48 ± 0.08	9.98 ± 0.02	[45,48,49,62, 65,68–70,72]
	1	174	288	d:17, s:4, t:11, ic:2, tc:1	α	$0.66^{+0.14}_{-0.10}$ s	9.93 ± 0.03	10.07 ± 0.03	[45,49,56,61, 62,65,70,72]
		173	287	d:16, s:1, b:1, ic:1	α	$0.48^{+0.14}_{-0.09}$ s	10.03 ± 0.02	10.17 ± 0.02	[46,49,56,61, 70–72]
		172	286	d:25, b:2	$\alpha: 60^{+10}_{-11}$	$0.12^{+0.04}_{-0.02}$ s	10.21 ± 0.04	10.35 ± 0.04	[46,47,49,56, 70,71,73,74]
1	10	171	285	b:1	α	$0.13^{+0.60}_{-0.06}$ s	11.50		[47]
1 I 1	13 113	165 173	278	d:3	a	2 ms 9.5+6.3 s	11.52 - 9.61_9.75	9.79 ± 0.05	[7/1 86_80]
1	113	173	280 285	d:17	α	$4.2^{+1.4}_{-0.8}$ s	9.47–10.18	9.79 ± 0.03 10.01 ± 0.04	[74,80,81, 86-88]
		171	284	d:27, t:20	α	$0.91^{+0.17}_{-0.13}$ s	9.10–10.11	10.12 ± 0.01 ≈ 10.3 [83]	[75,76,80,81, 83,88,84]
		170	283	d:1, t1	α	75^{+136}_{-30} ms	10.23 ± 0.01	10.38 ± 0.01	[75,76,81,83, 84]
		169	282	d:2	α	73^{+134}_{-29} ms	10.63 ± 0.08	10.78 ± 0.08	[82]
1	112	173	285	d:10, s:1, t:4, ic:1, tc:1	α	28^{+9}_{-6} s	9.19 ± 0.02	9.32 ± 0.02	[45,48,49,60, 62,65,68–70, 72]
		172	284	d:19, s:4, t:11, ic:2, tc:1	SF	$98^{+20}_{-14} \text{ ms}$			[45,49,56,61, 62,65,70,72]
		171	283	d:22, s:4, b:1, ic:6	α : \geq 93	$4.2^{+1.1}_{-0.7}$ s	9.53 ± 0.02 9.33 ± 0.06 8.94 ± 0.07	9.66 ± 0.02	[46,49, 56–59,61,63, 70,71]

(2015) 62-98 ¥ Yu.Ts.Ogar

Relativistic effects

1	
1 H hydrogen 1.008 [1.0078, 1.0082]	2
3 Li lithium 6.94 [6.938, 6.997]	4 Be beryllium 9.0122
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]
19 K potassium 39.098	20 Ca calcium 40.078(4)
37 Rb rubidium 85,468	38 Sr strontium 87.62
55 Cs caesium	56 Ba barium
87 Fr francium	88 Ra radium
119 120 uun ubn	

																18
																2 He helium
		Key:									13	14	15	16	17	4.0026
		atomic num Symbo name conventional atomic w standard atomic w	ber DI veight								5 B boron ^{10.81} [10.806, 10.821]	6 Carbon 12.011 [12.009, 12.012]	7 N nitrogen ^{14.007} [14.006, 14.008]	8 O oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur ^{32.06} [32.059, 32.076]	17 Cl chlorine ^{35.45} [35.446, 35.457]	18 Ar argon ^{39.95} [39.792, 39.963]
	21 Sc scandium	22 Ti titanium	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	29 Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine 79.904	36 Kr _{krypton}
	44.956 39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	51.996 42 MO molybdenum	43 technetium	55.845(2) 44 Ru ruthenium	58.933 45 Rh rhodium	46 Pd palladium	63.546(3) 47 Ag silver	65.38(2) 48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	51 Sb antimony	78.971(8) 52 Te tellurium	[79.901, 79.907] 53 iodine	83.798(2) 54 Xe xenon
57-70 hthanoids	88.906 71 Lu lutetium 174.97	91.224(2) 72 Hf hafnium 178.49(2)	92.906 73 Ta tantalum 180.95	95.95 74 W tungsten 183.84	75 Re rhenium 186.21	101.07(2) 76 OS osmium 190.23(3)	102.91 77 Ir iridium 192.22	106.42 78 Pt platinum 195.08	107.87 79 Au gold 196.97	112.41 80 Hg mercury 200.59	114.82 81 TI thallium 204.38 [204.38, 204.39]	118.71 82 Pb lead 207.2	121.76 83 Bi bismuth 208.98	127.60(3) 84 PO polonium	126.90 85 At astatine	131.29 86 Rn radon
39-102 Ictinoids	103 Lr Iawrencium	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 LV livermorium	117 TS tennessine	118 Og oganesson

IUPAC Periodic Table of the Elements

121 ubu

57 La lanthanum	58 Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 HO holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbium
138.91	140.12	140.91	144.24		150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05
89 AC actinium	90 Th thorium	91 Pa protactinium	92 U uranium	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 ES einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium
	232.04	231.04	238.03										

For notes and updates to this table, see www.iupac.org. This version is dated 1 December 2 018. Copyright © 2 018 IUPAC, the International Union of Pure and Applied Chemistry.

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

2

Chimie des SHE

Mesure de volatilité

T-2∆T T-3∆T

à l'échelle de l'atome

Abondance

Temps = 1, 6 s

SHE Barrier distribution study

Measurement of target like particle through GARIS I

In order to study the nucleus–nucleus interactions for syntheses of superheavy nuclei, we measured excitation functions for the quasielastic scattering of ⁴⁸Ca+²⁰⁸Pb, ⁵⁰Ti+²⁰⁸Pb, and ⁴⁸Ca+²⁴⁸Cm using the gas-filled-type recoil ion separator GARIS. The quasielastic scattering events were clearly separated from deep-inelastic events by using GARIS and its focal plan detectors, except for high-incident-energy points. The quasielastic barrier distributions were successfully extracted

Fig. 7. (Color online) Measured excitation function for the QE scattering cross section relative to the Rutherford cross section (top panels). Left, middle, and right panels are for the ⁴⁸Ca+²⁰⁸Pb, ⁵⁰Ti+²⁰⁸Pb, and ⁴⁸Ca+²⁴⁸Cm systems, respectively. The corresponding QE barrier distribution (middle panels) and the evaporation residue cross sections reported at different center-of-mass energies from the syntheses of No, Rf, and Lv evaporation residues^{15,16,38-40} (lower panels) are also shown. Red symbols indicate the experimental data from this work, for which the error bars include only the statistical uncertainty. Green symbols indicate the experimental data of mixed QE and DI events. These data points provide an upper limit for $d\sigma_{QE}/d\sigma_R$ (see Sect. 2.3). Blue solid curves indicate the best fit of the coupled-channels calculation with the parameters shown in Table II. Blue dashed curves show the results of the single-channel calculations with the same internuclear potential as that used for the blue solid lines.

Martin BORDEAU - ED 182 - Structure & limites de l'édifice quantique nucléaire superlourd - 6/6/2023

Fig. 1. (Color online) Schematics of GARIS and detectors. GARIS consists of a first dipole magnet (D1), followed by two quadrupole magnets (Q1) and (Q2), and a final dipole (D2) magnet. The lower figure shows the focal plane detector system composed of two ToF detectors and a 16-strip PSD.

One measures the barrier distribution and determine E_{cm} for side collision (=optimal bombarding energy for synthesis)

—> get optimal energy

