$^{12}\mathrm{C} + ^{12}\mathrm{C}$ data analysis with STELLA

Bella Edoardo Supervisor: Marcel Heine

IPHC - STELLA

21-06-2023

Bella Edoardo ((IPHC)	
-----------------	--------	--

STELLA Collaboration

Outline

1 Astrophysics and fusion reactions

- 2 STELLA experiment
- **3** Calibration and cabling
- 4 Spectrum investigation
- **(5)** Cross-section and angular distribution
- 6 Conclusion
- 7 References

・ 同下 ・ ヨト ・ ヨト

Stars in hydrostatic equilibrium

Nucleosynthesis:

- Hydrogen burning: α , ... production.
- Helium burning: C, O, ... production.
- Carbon burning:

Competition between thermonuclear reactions and the gravitational infall.

Gamow window and carbon reaction

Considering temperature (T= $0.9 \cdot 10^9$ K), density ($\rho = 10^5 g/cm^3$), tipical for star with mass M = 25 M_{\odot} and Gamow energy: $E_0 = 2.25$ MeV.

Experimental setup and detectors

- 36 LaBr₃ scintillators for γ -particles detections.
- DSSSDs: S3F and S3B.
- S3: 24 ohmic strips with pitches of 960 μm and separator of 100 $\mu m.$

Bella Edoardo (IPHC)

STELLA Collaboration

< 4 P ►

→

э

Data analysis of light-charged evaporation particles detection from a experimental campaign of 2016 with effective energy E = 5.02 MeV:

- Pre-requisite: Calibration QCDs output of S3s. (A good calibration can improve the output signal).
- Investigation on the spectrum feature with Geant4 simulations.
- Calculate and describe the angular distribution of the cross-sections.

Step 0: Event labeling

• Labeling QCD output with respect to the number of strips triggered: multiplicity 1 (m_1) and multiplicity 2 (m_2) .

In courtesy of Jean Nippert.

Step 1: Energy calibration

- Labeling QCD output with respect to the number of strips triggered: multiplicity 1 (m_1) and multiplicity 2 (m_2) .
- Shifting m_2 events with respect to m_1 improve the quality of the signal.

Step 2: Strips mapping

- m_2 events selection for α_0 .
- Construction of the chain of neighbor detectors.

Geometry dependence

- Labeling QCD output with respect to the number of strips triggered: multiplicity 1 (m_1) and multiplicity 2 (m_2) .
- Shifting m_2 events with respect to m_1 improve the quality of the signal.

Investigate the geometry of the detector:

• We expect $\frac{m_2}{m_1}$ geometry dependent.

				2 E 7	1 - 1	 -) 4 (-
Bella Edoardo	(IPHC)	STELLA Collaboration		21-06-	2023	10 / 20

Light-charged particles spectrum

- Identification of the α_0 , α_1 , p_0 and p_1 lines.
- Punch-through effect on S3F for p_0 and p_1 .

Details in peak shape

- Smooth box function for fit description
- Asymmetries and width investigation.
- Does it depend on the shape of the beam spot?

Spot of the beam

experiments and simulations

• Can the ellipse (6 mm x 2 mm) or box shape (4 mm x 4 mm) of the spot of the beam modify the quality of the signal?

asymmetry
$$(strip, \alpha_0) = \sigma_h / \sigma_l$$

width $(strip, \alpha_0) = (\mu_h + \sigma_h) - (\mu_l - \sigma_l)$

experiments and simulations

• Can the ellipse (6 mm x 2 mm) or box shape (4 mm x 4 mm) of the spot of the beam modify the quality of the signal?

asymmetry (strip,
$$\alpha_0$$
) = σ_h/σ_l
width (strip, α_0) = ($\mu_h + \sigma_h$) - ($\mu_l - \sigma_l$)

Cross-section angular distribution calculation

• Cross-section in Lab system:

$$X_S \equiv \left. \frac{d\sigma_R}{d\Omega_{Lab}} \right|_{strip} = \left. \frac{I_R}{N_t \cdot \Delta\Omega_{Lab} \cdot I_{beam}} \right|_{strip} \left[\frac{\mathbf{b}}{\mathbf{sr}} \right] \tag{1}$$

 I_R = integral of the energy signal, N_t = density of the target, $\Delta\Omega_{Lab}$ = solid angle, I_{beam} = beam current.

• Pass from Lab system to CoM system:

$$\frac{\mathrm{d}\sigma_R}{\mathrm{d}\Omega_{CoM}} \to \frac{\mathrm{d}\sigma_R}{\mathrm{d}\omega_{Lab}} \tag{2}$$

Bella Edoardo (IPHC)

Cross-section angular distribution

Legendre polynomial fit description:

- $\sigma = 4\pi a_0$ where a_0 is the first coefficient of the Leg. polynomial.
- Lack of information in the central region \rightarrow PIXEL detector.

Bella Edoardo (IPHC)

STELLA Collaboration

21-06-2023

16/20

Our data analysis contribution:

- Mapping of QCDs signal and m_2 recalibration.
- Spot beam simulations: parametric studies.
- Cross-section angular distribution for α_0, α_1, p_0 and p_1 .

In future investigations:

- Have a consistent spin assignment to the compound nucleus.
- σ_{tot} is slightly underestimated: check it with earlier analysis.
- Improve the fit description of α_1 and p_0 .

・ 何 ト ・ ヨ ト ・ ヨ ト

Thanks to you and all the members of the STELLA collaboration.

Bella Edoardo (IPHC)	
----------------------	--

STELLA Collaboration

A D > A D >
A

Punch-through and skewed-gaussian fit

STELLA Collaboration

21-06-2023

m_2/m_1 ratio for S3F and S3B

Bella Edoardo (IPHC)

STELLA Collaboration

21-06-2023

20 / 20