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This informal talk will mostly :

» present results of small-scale projets (1-5 persons)

e focus on ad-hoc techniques ...
e ... that burn a lot of CPU time

 only superficially touch machine learning

Actually quite representative of condensed-matter theory & numerics

albeit not always the case ...



Introduction to condensed matter
& strongly correlated quantum systems

Motivations

Models

Numerical challenges



Condensed matter theory

e Condensed matter theory = Understand the material world around
us, using a description at the atomic level

e Quantum mechanics MUST be taken into account and 1s the source
of beautiful / useful phenomena at the electronic scale

Quantum computer

NanoEverything ...
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The many-electron problem

» Often, electrons moving in solids can be seen as independent

 However, in many cases, interactions between electrons are relevant
New phenomena and phases of matter emerge

High-Tc superconductors Fractional quantum Hall effect Quantum phase transitions in
S . ultracold atoms
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Defining the problem (« rules of the game ») 1s very easy, yet
very hard to solve ! Emergence of complexity, collective solutions

The constructionist hypothesis breaks
down when confronted with the twin

e More 1s different

. thinking is that the reductionist hypoth- difficulties of scale and complexity. The

More IS lefer ent esis does not by any means imply a behavior of large and co.mplex‘ aggre-
“constructionist” one: The ability to gates.of elementary particles, 1t turns

PW. Anderson (1972) reduce everything to simple fundamen- out, is not to be understood in terms
tal laws does not imply the ability to of a simple extrapolation of the prop-

start from those laws and reconstruct T @ & s peailiees, e, o

the universe. In fact, the more the ele- gachilevelioftcomplexitylentirelyincyy

properties appear, and the understand-

Solving the N electrons problem 1s NOT solving N times the one-electron problem



Models of strong correlations

e Simplified models for electrons and their spins defined on a lattice

e Hubbard model = Electrons moving on a lattice, with repulsion on the same site
(stmplification w.r.t Coulomb interactions)

t
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Competition between kinetic (electrons want to move) 15 ¢ J)
and potential energy (electrons localize)

* Prototypical model of material with strong correlations, high-Tc superconductors ...

e Complexity = Size of Hilbert space = 4N (N number of lattice sites)

e Simple questions ... : what 1s the ground-state, low-lying excitations ? Do they break
any symmetry ? If yes, which one(s) ?

* ... but no simple answers: model can only be solved in 1d. We don’t know the
phase diagram in d>1 in general.



Models of strong correlations

e Heisenberg model = Electrons are localized, can exchange their spins

Describe magnetic properties of insulators : (anti-)ferromagnets
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* To each site, 1s associated a spin : Orientation = T or *
. . 0 1 0 —i . (1 0 (1 0
3 Pauli matrices "= (1 0) o = (Z O) 7= (0 —1> = (o 1>

e For N spins : basis state | LTI 1LLL1T) = 001010100011

e Complexity = 2N e Hamiltonian matrix does spin-flips on nearest-neighbours sites

I I R R

e Exact solution only in 1d. We understand the physics / we can
do good simulations when the lattice 1s bipartite.

e Difficult situation : Frustrated antiferromagnets

?

Can already be seen at the « classical level »



Some numerical methods to solve the
(lattice) quantum many-body problem

« Exact » methods

Variational methods



Numerical simulations of strongly correlated systems

e Large variety of methods to « solve » the quantum many-body problem

e Exact Diagonalization : Solve exactly the eigenproblem. Small N only !

* Quantum Monte Carlo : avoids exponential complexity : up to N ~ 106, .-
but often prohibited by a strong sign problem

e Variational methods : Based on good physical intuition or ...

e Matrix-Product States / Tensor-Network methods : L e J="" M![H]%[z\{m]%-..wmmlzl
compressing quantum information

J1J27J3 " JN J1 J2 JN

 Machine learning : Neural Quantum States

e.g. w. variational quantum
eigensolver (VQE) algorithm




Exact diagonalization of strongly correlated systems (1/2)

e H s usually a big sparse matrix = Gold mine

¢.g. Heisenberg spin model : Each of 2N lines has ~ N non-zero matrix elements

e Use all symmetries of the problem (H 1s block diagonal)

Use standard sparse linear algebra techniques pushed to their limits

e Standard problems:

e Full spectrum : #H max ~ 103 N =24
(scalapack)

* Low-energies: #H typique ~ 109, 1010 N = 36
Lanczos algorithm+openMP

#H max ~ 5.1011 N = 50
Lanczos+MPI

Sylvain Capponi
1 vector ~ 1 TB of RAM

MESSAGE : Do NOT store Hamiltonian in memory (matrix-free methods)
Do NOT store eigenvectors on disk (analysis on the fly & cheapest to recompute)



Exact diagonalization of strongly correlated systems (2/2)

e H is usually a big sparse matrix

e Sometimes unusual problems ...

* Interior eigenvalues

#H max ~ 107

N =126

Spectral transtorms Nicolas Laflorencie, FA

e Unitary problems

 Sometimes don’t want eigenstates, but just to apply a fonction of H

e.g. time evolution, thermal typicality ...

W(t)) = exp(—iHE)|W(0))  [¥(B)) = exp(~BH/2)Random)

MESSAGE : Never diagonalise H, instead work 1n the Krylov basis
Span{|¥(0)), H|¥(0)), H*|¥(0)),... H"|¥(0))}

Sylvain Capponi, FA



Quantum Monte Carlo methods (1/2)

e Monte Carlo ubiquitous in physical sciences, often to sample high-dimensional integrals

e « Quantum Monte Carlo » regroup a zoo of methods
Determinant MC, Projection QMC, Green Function MC, Path integral MC ...

Z = Trexp(— ZW “

<\G0al Sample sum with Monte Carlo,
according to the weight W (C)

Quantum problem 1n dimension d — Classical stat-mech problem in dimension d+1 I
e Extremely efficient method when applicable ...

.. but the weight W (C) does not need to be positive !! — Sign problem
Kills exponentially fast

. o the MC sampling
Present in general for fermionic systems and frustrated magnets

;\ o' o &
:fvx./x
X L e

MESSAGE 1 : On a lattice, sign problem 1f one off-diagonal matrix element Hi; > 0

Up(r),22) = —VYr(x2,21)



Quantum Monte Carlo methods (1/2)

e Monte Carlo ubiquitous in physical sciences, often to sample high-dimensional integrals

e « Quantum Monte Carlo » regroup a zoo of methods
Determinant MC, Projection QMC, Green Function MC, Path integral MC ...

Z = Trexp(— ZW &

<\G0al Sample sum with Monte Carlo, ; H :
according to the weight W (C) A A

.. but the weight 117 (C) does not need to be positive !! ~ — Sign problem

Present in general for fermionic systems and frustrated magnets

MESSAGE 1 : On a lattice, sign problem 1f one off-diagonal matrix element Hj; > 0

MESSAGE 2 : Sign problem i1s also a representation problem : depends on the basis!

Sometimes, symmetries or a XN NS Jie
[ ] [ ] [ ] 1 1 J

clever reformulation can alleviate/ | Dimondchan ] : . . FA

remove the sign problem

°
Fully frustrated spin ladder Extended Shastry-Sutherland 1d pyrochlore

MESSAGE 3 : Even without a sign problem, path integral can still be hard to sample !

e.g. systems with disorder (spin glasses), constrained systems...



Matrix Product methods (1/2)

e Matrix Product ansatz : many-body states/operators are products of local matrices

e Matrix Product states in one %)= > Chgoinlivein) = 3 > MERLMEE . MIVN i e, )

J1,J2--JN J1---JN Q2...0N

= MW ARz p NN Gy G
e.g.I ... I> Z J1, J2 IN)

Ji---JN

formula/picture

« Virtual » index (summed over)

a=1,...,x

02 I = ™ ?--I-[MIlI]%[MD]]% . .O‘_Nm_(}{jyﬂ =

b I I I
Ao G ce s g ' ' e ‘ « Physical » index
J1 J2 J3 JN J1 J2 N j="11

e Why should it work ? Low-energy states have small entanglement

H

W (j1,72)) = MI*M?2  Separable (unentangled) state

L B J1 nrd
W(j1,72)) = » MM Ty)
T~ Small number of terms = Small entanglement /
Low-entanglement

corncer

MESSAGE : Many-body ground states live 1n a corner of the Hilbert space

 Interest: Trade exponential # of coefficients with polynomial # of parameters to optimize upon (hopefully y small)



Matrix Product methods (2/2)

b | = O‘l?..l.[Mm]%[M[z]]%...O‘_Nmﬁ?wﬂz
| |

1 | |
J1J27J3 " JN J1 J2 JN

e MPS = Extremely efficient ansatz for one-dimensional systems
(Unmps|H|Pnps)
(Unmps|Pnmps)

e Optimization method: Density Matrix Renormalization Group ~ Evar = min

g

: : : : 7 i
e Same 1dea can be applied to time-evolution, operator ansatz etc R el
J1 Jo JN

e More difficult in higher dimensions (tensor contraction 1s hard)

Projected Entangled Pair State (PEPS) ansatz
Didier Poilblanc, Matthieu Mambrini

Search for variational descriptions of exotic states of

~« Physical » leg
matter (e.g. chiral spin liquids) using these ansatz J ="

MESSAGE : Such Tensor Networks representations of higher-dimensional
tensors could be / have been adapted to other fields

Tensor trains 1n maths, supervised machine learning, continuum differential equations (Navier Stokes) ...



Machine learning |V) = Neural quantum states

e Parametrization of a quantum wave-function (e.g. for N spins 1/2) with a neural network

X y .
- -
n
£

fNN(\0>) =groWrgr—10...Wagq OW1‘0>

e g non-linear function | * W = Matrices of “weights”

RELU Tanh Sigmoid Element-wise In general COH}plef(
1_// . a(07) + Zl 7 Wiy Wie ... Win | ai
o L’ ........ B ....... glo) = g<a2)z o Wlo) = Wor Wao ... Way 0.2

TR Wi Wi oo Win | J%V

e The architecture of the network (number & size of layers, choice of non-linear function) 1s free

In general fixed
e The weights W and bias b are variational parameters to optimise upon

(UnN|H |PNN)
(NN |PUNN)

e Optimization through Variational Monte Carlo computation to e.g. minimise Evar =



Some examples

Simplest example: Restricted Boltzmann Machine (RBM)

V(o) = exp]d ajoi + 3 bhi+ Y Wihiod]  0f = %1
hi J i i,j

M Hidden neurons
a=M/N~1,..,10

Al

cosh(z Wijos + bz)] eXp(Z a;o;)
J J

=1 h
Convolutional neural network (CNN) g(x) = log(cosh())

L = = Sum

=l . —= e
| = ;-’D},Mﬂﬂ::j ‘MELM 7~ Sow()
10 8

Channels: 12

6 o 2
Takes explicit advantage of locality through filters; Calculations are lighter-weight

Computational graph states RBM as a computational
graph state = Combining 2
Useful to define neural network as i ., RBM
comgutatlonal graphs states : allows to e |- o —
combined and modify architectures efficiently SO, S T | e

'
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- Algorithms (automatic differentiation, backpropagation,
ESSAGE : We can harness all advances by  gptimisers. )

L community for variational computations  Software (TensorFlow, Pytorch, Keras, Jax etc)
Hardware (GPUs )

< =




Variational efficiency of neural quantum states 1n practice
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MESSAGE : Excellent wave-function ansatz from neural networks.
No entanglement limitation



Implementing symmetries

Convolutional Neural networks (CNN) for translation invariance

Sum

(b) o
i -~ - —= : - - | -] -4 -
i il [T = 4 T2 ‘.:L/
Channels: 12 10 8 6 4 2

Different channels =
Various positions of the filters

h(f]) — F Z h(q—l) K(q:

1,9,k Lii+my,k+me "i.l.my my
Ly My

— F (K(q) " h(q—l))

>~ Zconn (o)

\

Last pulling layer averages
over all channels
Ensure translation

Invariance



Implementing symmetries

Group Convolutional Neural networks (GCNN) for all symmetry operations

B 4 I Sum

.’2 — . Add characters of the irrep
== | fiHh- JL >~ Zcnn (o) - -
=T o TR T e  — the final computation

Channels: \ 12 10 8 6 4 2

All symmetry operations

Variational computations for ground-states in all irreps

_ et
of arbitrary graphs o fnctheton N8

Ex. Heisenberg spin 1/2 model on fullerene molecules
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https://netket.org

Conclusions

e Condensed matter theory & strongly correlated systems is a strong activity at LPT

e Condensed matter numerics: a large variety of techniques

Many have close cousins (when not identical) in quantum chemistry, nuclear
physics (nuclear many-body problem), astrophysics, statistical mechanics etc

Lots of inspiration / collaboration possible!



