Bayesian statistics applied to gravitational waves

(PRL 116, 061102)

Ollie Burke ollie.burke@l2it.in2p3.fr

The structure

Review: Gravitational Waves
 Crash course: Bayesian Statistics + simple application
 Discussion: Current challenges + prospects for future

Part 1: Gravitational Waves

Einstein's Universe

Curvature

Einstein's Universe $\propto T_{\mu\nu}$ Guv Stuff Curvature

Space-time tells matter how to move Matter tells space-time how to curve

John Archibald Wheeler

Small disturbance to this "fabric"

- When space-time is disturbed, those "disturbances" must go somewhere Gravitational Waves: Propagating, oscillating gravitational fields • Sourced by: Acceleration of objects in binary system

(https://www.black-holes.org/)

In General Relativity **Two polarisations**

Fundamental to GW detection

The effect on particles

How small is small?

Strain
$$\approx 10^{-42} \left(\frac{\text{Separation}}{50 \text{ cm}}\right)^2 \cdot \left(\frac{\text{Frequency}}{1 \text{ Hz}}\right)^2 \cdot \left(\frac{\text{Ma}}{500 \text{ g}}\right)^2$$

Strain $\approx 10^{-21} \left(\frac{\text{Separation}}{100 \text{ km}}\right)^2 \cdot \left(\frac{\text{Frequency}}{400 \text{ Hz}}\right)^2 \cdot \left(\frac{\text{Mass}}{1.4M_0}\right)^2$

How do we measure:

How do we measure:
Strain =
$$\frac{\Delta L}{L} \sim 10^{-21}$$
?

Laser Interferometry

Laser Interferometer Gravitational-Wave Observatory (LIGO)

These detectors are the most sensitive instruments on earth

A new era in Observational Astronomy

(https://www.black-holes.org/)

LIGO-Virgo collaboration

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

The Laser Interferometer Space Antennae (LISA)

(Credit: AEI/Milde Marketing)

LISA: More sensitive to heavier systems

Example sources for LISA

Galactic binaries

Extreme mass-ratio Inspirals

All these sources emit gravitational waves in mHz band! **Prime targets for LISA!**

Massive black hole Binaries

Part 2: Bayesian Statistics

Motivation: Bayesian statistics

Parameters?

- $p(d | \theta)$: Likelihood
- $p(\theta)$: Prior distribution
- $p(\theta \mid d)$: Posterior distribution

Bayes' Theorem

$p(\theta \mid d) \propto p(d \mid \theta) p(\theta)$

Goal: Obtain samples $\theta \sim p(\theta \mid d)$

The data stream

Deterministic

Probabilistic quantity \iff Probabilistic Models

Probabilistic

• Assume n(t) is stochastic, Gaussian with finite mean and variance that **do not** depend on time.

• Further assume that covariance only depends on the lag.

Noise

The likelihood

Data stream $d(t) = h_{\rho}(t; \theta) + n(t)$, with $n(t) \sim N(0, \Sigma_n)$

(Log) Likelihood: $\log \mathcal{L}(d | \boldsymbol{\theta}) \propto (\boldsymbol{d}(t) - (\boldsymbol{h}_m(t; \boldsymbol{\theta}))^T \Sigma_n^{-1}) \boldsymbol{d}(t) - (\boldsymbol{h}_m(t; \boldsymbol{\theta}))$ Model templates

Goal: Identify "best" template $h_m(t; \theta)$ that matches $h_e(t; \theta)$ in data d(t)

The joy of the frequency domain

Signals from a different perspective

Fourier transform

Fourier transform

Likelihood time/frequency domain

Time domain

Stationary noise \iff Dense Σ_n

 $\log \mathscr{L}(d | \boldsymbol{\theta}) \propto (\boldsymbol{d}(t) - \boldsymbol{h}_m(t; \boldsymbol{\theta}))^T \Sigma_n^{-1} (\boldsymbol{d}(t) - \boldsymbol{h}_m(t; \boldsymbol{\theta}))$

• Advantage

- Relatively clean no artefacts!
- Disadvantage
 - Expensive $\mathcal{O}(N^2)$

Frequency domain

Stationary noise \iff Diagonal Σ_n

 $\log \mathscr{L}(d \mid \boldsymbol{\theta}) \propto -2\sum \frac{|\hat{d}(f_i) - \hat{h}_m(f_i; \boldsymbol{\theta})|^2}{S(f_i)} \Delta f$

- Advantage • • Cheap: $\mathcal{O}(N \log_2 N)$
- Disadvantage •
 - Subject to sampling error.

Sampling from the posterior

- 1. Initialise parameter values θ^0
- 2. For i = 1, ..., N
- 3. Draw new point $\boldsymbol{\phi} \sim q(\boldsymbol{\phi} \mid \boldsymbol{\theta}^{i-1})$
- 4. Compute $\alpha = \min\left(1, \frac{p(\phi \mid d)}{p(\theta^{i-1} \mid d)}\right)$

1. Accept ϕ with probability α . Set $\phi = \theta^{i}$.

2. Reject $\boldsymbol{\phi}$ otherwise. Set $\boldsymbol{\theta}^{i-1} = \boldsymbol{\theta}^{i}$.

5. Increment i by one and return to step 3.

Instructive Example

- $h_e(t; \theta) = a \cos[2\pi t(f + \dot{f}t)]$, here $\theta = \{a, f, \dot{f}\}$
- Estimate: $a = 5 \cdot 10^{-21}$, $f = 10^{-3}$ and $\dot{f} = 10^{-8}$
- Duration:120 hours
- Data: $d(t) = h_e(t; \theta) + n(t)$, noise gaussian + stationary

Likelihood: $\log \mathscr{L}(d \mid \boldsymbol{\theta}) \propto -2\sum_{i} \frac{|\hat{d}(f_i) - \hat{h}_m(f_i; \boldsymbol{\theta})|^2}{S_n(f_i)} \Delta f$

• Uniform priors on parameters

25

Goal: Identify parameters θ that best match the waveform

Finding the "best" signal

Parameter Estimation

- Identified "best" location in parameter space
- Now sample $\theta \sim p(\theta \mid d)$ and explore posterior!
- Make statements on θ given observed data d

https://github.com/OllieBurke/Tutorials.git

Part 3: Real life situations

Reality Strikes

- Unknown noise
- Multimodal likelihood surface
- Expensive and imperfect waveform models
- Multiple unknown sources in the data
- Gaps, glitches and aliens other gremlins in data

We require sophisticated samplers to account for each obstacle

Multimodal likelihood surface

Samplers **must** be able to tackle the issue of multimodality!

Multimodal likelihood surface

Special place in hell for people who enjoy this stuff

Example EMRI Posterior (Chua, Cutler, 2022)

Imperfect Waveforms

- Waveforms are approximate
- Waveform errors ⇐⇒ biases
- Requirement:
 - Accuracy
 - Speed
 - Cover all parameter space

Multiple Waveforms

- Must account for **all** resolvable signals in data

Time domain

Frequency domain

Unlike ground-based detectors, LISA will be **dominated** by signals

350

Understanding noise

LIGO - glitch

LISA pathfinder - glitch

(Credit: LIGO-Virgo Collaboration)

(Credit: LISA Pathfinder Collaboration)

LISA - gaps and glitch

https://lisa-ldc.lal.in2p3.fr

- noise
- **Extremely difficult** •

- Massive black hole binaries
- 2. Galactic Binaries
- 3. Verification Galactic Binaries
- 4. Noise instrumental + confusion

Combination — The global fit

Global fit: Simultaneous characterisation of all resolvable signals and

- Need to include EMRIs in search and characterisation pipelines.
 - **BRUTAL** task. We can't even find one! •
 - Event rates: Anywhere between 1 and 10,000... •
- Need to include non-stationary features of noise.
 - Gaps/glitches and other demons could change entire search strategies •
 - Completely unavoidable and yet unsolved. •

... and the rest?

• Multi-band detections? Stellar origin sweeping through LISA & LIGO band? Horrendous.

Time: Os

Questions

(Credit: Nils Fischer)

ollie.burke@l2it.in2p3.fr https://github.com/OllieBurke/Tutorials.git

Signal-to-noise Ratio

Data stream: $d(t) = h_{\rho}(t; \theta) + n(t)$

Question: How bright is $h_e(t; \theta)$ compared to background noise n(t)

$$SNR^{2} = (h_{e} | h_{e}) = 4 \int_{0}^{\infty} \frac{|\hat{h}_{e}(f)|^{2}}{S_{n}(f)} df = \frac{Powe}{Varian}$$

er of noise ce of Noise

Goal: Identify parameters θ that best match the waveform

Finding the "best" signal

https://github.com/OllieBurke/Tutorials.git

