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The structure

1. Review: Gravitational Waves


2. Crash course: Bayesian Statistics + simple application 


3. Discussion: Current challenges + prospects for future
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Part 1: Gravitational Waves



Einstein’s Universe


Gμν⏟
Curvature

∝ Tμν⏟
Stuff
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Einstein’s Universe
Space-time tells matter how to move

Matter tells space-time how to curve

John Archibald Wheeler
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Gμν⏟
Curvature

∝ Tμν⏟
Stuff



Small disturbance to this “fabric”
• When space-time is disturbed, those “disturbances” must go somewhere

• Gravitational Waves: Propagating, oscillating gravitational fields

• Sourced by: Acceleration of objects in binary system
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(https://www.black-holes.org/)



The effect on particles

Fundamental to GW detection

In General Relativity

Two polarisations
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How small is small?

How do we measure:  

 ? Strain =
ΔL
L

∼ 10−21

Laser Interferometry!

(Rainer Weiss, 1970s)

(LIGO archives)
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Laser Interferometry

(LIGO archives)9



2015
2015

Laser Interferometer Gravitational-

Wave Observatory (LIGO)
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These detectors are the most sensitive instruments on earth

2017



A new era in Observational 

Astronomy

(https://www.black-holes.org/)
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LIGO-Virgo collaboration



12(LIGO-Virgo-KAGRA | Aaron Geller | Northwestern)



The Laser Interferometer Space 
Antennae (LISA)

LISA: More sensitive to heavier systems
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(http://gwplotter.com/)(Credit: AEI/Milde Marketing)

http://gwplotter.com/


Example sources for LISA
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Galactic binaries Extreme mass-ratio

Inspirals

Massive black hole

Binaries

All these sources emit gravitational waves in mHz band! 
Prime targets for LISA!

(Credit: Lorenzo Speri & Nils Fischer) (Credit: NASA's Goddard Space Flight Center)

Credit: NASA/Tod Strohlager

GSF/Dana Berry 


[Chandra X-ray Observatory] 



Part 2: Bayesian Statistics



Motivation: Bayesian statistics

Parameters?
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Bayes’ Theorem
•  : Likelihood


•  : Prior distribution


•  : Posterior distribution

p(d |θ)

p(θ)

p(θ |d)

p(θ |d) ∝ p(d |θ) p(θ)

Goal: Obtain samples
 θ ∼ p(θ |d)
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(Reverend Thomas Bayes 

[1701-61]) 




The data stream
data = +

Deterministic
 Probabilistic 

Probabilistic quantity  Probabilistic Models ⟺
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Signal Noise



Noise
• Assume  is stochastic, Gaussian with finite mean and 

variance that do not depend on time.


• Further assume that covariance only depends on the lag.

n(t)
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The likelihood
Data stream , with  d(t) = he(t; θ) + n(t) n(t) ∼ N(0,Σn)

(Log) Likelihood: log ℒ(d |θ) ∝ (d(t) − hm(t; θ))TΣ−1
n (d(t) − hm(t; θ))

Model templates

Goal: Identify “best” template  that matches  in data hm(t; θ) he(t; θ) d(t)
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Evil noise co-variance

Matrix



The joy of the frequency domain

Frequency 
Domain

Time 
Domain
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Signals from a different perspective

Fourier transform

Fourier transform
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Likelihood time/frequency 

domain

• Advantage
• Relatively clean - no artefacts!


• Disadvantage
• Expensive - 𝒪(N2)

log ℒ(d |θ) ∝ − 2∑
i

| ̂d( fi) − ĥm( fi; θ) |2

Sn( fi)
Δf

(Whittle, 1953, IoMS)

Stationary noise  Dense ⟺ Σn

Time domain

log ℒ(d |θ) ∝ (d(t) − hm(t; θ))TΣ−1
n (d(t) − hm(t; θ))

Frequency domain

Stationary noise  Diagonal ⟺ Σn

• Advantage
• Cheap: 

• Disadvantage
• Subject to sampling 

error.

𝒪(N log2 N)



Sampling from the posterior
1. Initialise parameter values 


2. For 


3. Draw new point 


4. Compute 


1. Accept  with probability . Set .


2. Reject  otherwise. Set .


5. Increment  by one and return to step 3. 

θ0

i = 1,…, N

ϕ ∼ q(ϕ |θi−1)

α = min (1,
p(ϕ |d)

p(θi−1 |d) )
ϕ α ϕ = θi

ϕ θi−1 = θi

i
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Instructive Example
• , here 


• Estimate: 


• Duration:120 hours


• Data: , noise gaussian + stationary


•
Likelihood: 


• Uniform priors on parameters

he(t; θ) = a cos[2πt( f + ·ft)] θ = {a, f, ·f}

a = 5 ⋅ 10−21, f = 10−3 and ·f = 10−8

d(t) = he(t; θ) + n(t)

log ℒ(d |θ) ∝ − 2∑
i

| ̂d( fi) − ĥm( fi; θ) |2

Sn( fi)
Δf

SNR2 = 4∫
∞

0

f | ĥ( f ) |2

Sn( f )
d log( f )
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“Power” of noise

“Power" of signal



Finding the “best” signal
Goal: Identify parameters  that best match the waveformθ

https://github.com/OllieBurke/Tutorials.git26



Parameter Estimation
• Identified “best” location in parameter space

• Now sample  and explore posterior! 

• Make statements on  given observed data 


θ ∼ p(θ |d)
θ d

https://github.com/OllieBurke/Tutorials.git27



Part 3: Real life situations



Reality Strikes
• Unknown noise


• Multimodal likelihood surface


• Expensive and imperfect waveform models


• Multiple unknown sources in the data


• Gaps, glitches and aliens other gremlins in data

We require sophisticated samplers to 
account for each obstacle
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Multimodal likelihood surface

Samplers must be able to tackle 
the issue of multimodality!
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Multimodal likelihood surface

Special place in hell for 
people who enjoy this stuff

(Chua, Cutler, 2022)

Example

EMRI


Posterior31



Imperfect Waveforms
• Waveforms are approximate


• Waveform errors  biases


• Requirement:


• Accuracy


• Speed


• Cover all parameter space

⟺ (Barack,2015)

32



Multiple Waveforms

• Unlike ground-based detectors, LISA will be dominated by signals


• Must account for all resolvable signals in data

(LDC group)

Time domain Frequency domain Time/Frequency domain
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(https://lisa-ldc.lal.in2p3.fr)

https://lisa-ldc.lal.in2p3.fr


Understanding noise

Noise model ⟺ Probabilistic Models

LIGO - glitch
(Credit: LIGO-Virgo Collaboration)

LISA pathfinder - glitch
(Credit: LISA Pathfinder Collaboration)

LISA - gaps and glitch
https://lisa-ldc.lal.in2p3.fr
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https://lisa-ldc.lal.in2p3.fr


Combination — The global fit
• Global fit: Simultaneous characterisation of all resolvable signals and 

noise


• Extremely difficult 
 
 
 
 
 
 
 

1.   Massive black hole binaries

2.   Galactic Binaries

3.   Verification Galactic Binaries

4.   Noise — instrumental + confusion


(Cornish, Littenberg 2023)35



… and the rest? 
• Need to include EMRIs in search  

and characterisation pipelines. 


• BRUTAL task. We can’t even find one! 


• Event rates: Anywhere between 1 and 10,000…

• Need to include non-stationary  
features of noise. 


• Gaps/glitches and other demons could change entire search strategies

• Completely unavoidable and yet unsolved.


• Multi-band detections? Stellar origin sweeping through LISA & LIGO band? Horrendous.
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Credit: Lorenzo Speri



Questions

ollie.burke@l2it.in2p3.fr
https://github.com/OllieBurke/Tutorials.git37(Credit: Nils Fischer) 
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Signal-to-noise Ratio
Data stream: d(t) = he(t; θ) + n(t)

Question: How bright is  compared to 
background noise   

he(t; θ)
n(t)

SNR2 = (he |he) = 4∫
∞

0

| ĥe( f ) |2

Sn( f )
df =

Power of noise
Variance of Noise

Define statistic:  ρd =
(hm |d)
(hm |hm)

⟹ N [ (hm |h)
(hm |hm)

,1]



Finding the “best” signal

Goal: Identify parameters  that best match the waveformθ

https://github.com/OllieBurke/Tutorials.git39


