
The benefits of particle transport
simulations in a web browsers.
Leszek Grzanka1,2,3, Szymon Kania2, Jakub Niechaj2

1 IFJ PAN Kraków, 2 ACK Cyfronet, 3 AGH Kraków

GATE Scientific Meeting 2023 25.04.2023

GATE and Jupyter Notebooks

Jupyter Notebooks eliminate the need for console use

and provide a more accessible interface for GATE users.

Access GATE from any web browser with the convenience

of Jupyter Notebooks.

However, users may still face challenges with installation, including

downloading Python and large GATE binaries.

Compatibility issues with different operating systems

(e.g. Windows, Mac OSX with M1 CPUs) may also be a concern for users.

Full web migration

Apps that run on the internet

Accessible through a web browser

No installation or console required

Works on any OS, easy to use and update

Fully client side applications

Types of Web Applications

Client + backend server applications

Personal
Computer

Web Server HTTP

Access to the
application

Personal
Computer

Web Server
HTTP

Backend
Server

Access to the
application

Heavy lifting
and expensive
computations

Types of Web Applications

Fully client side applications

WebPlot Digitizer

Client + backend server applications

Google Collab

Key benefits of running simulations in a browser

4 Benefits outreach and education

Prepared examples can be used to showcase the
simulations, making it easier for people to
understand the concept and get started with using
the tool.

3 Easy to share or present results

Scientists can easily share simulation results and
the input used to generate those results, which can
foster collaboration and more efficient research.

2 Small scale testing and improvements

Users can test their input and optimize their
parameters on a small scale before submitting
larger jobs to high-performance computing
systems.

1 No installation or setup required

There is no need to install any software on your
computer, making it a convenient option for users
with no technical experience.

How can we go full client side?

Javascript

● High level programing language design to
manage content for websites (animation,
form submit etc.)

● Modernly used to create web applications
of various sizes. From simple games to
powerful editors.

● Performance is limited by web browser
and you can’t easily do parallel computing.

WebAssembly

● Low level binary format that is designed to
be more efficient than JavaScript and can
also run in a web browser.

● Application usually written first in other
language.

● Application has to be downloaded every
time when you (re)open tab in a browser.

How can we go full client side?

Javascript

T-Rex Chrome

WebAssembly

WASM Doom

Early attempts

Compiling Geant4 to WebAssembly
Single ExampleB1
Google Summer of Code

Saurav Sachidanand
2018
https://medium.com/@saurvs/compiling-geant4-to-webassembly-cb124b75600d

CernVM-FS
POSIX read-only I/O on CernVM-FS
Reduced app size
2018
https://github.com/cvmfs-contrib/cvmfs-emscripten

Softindex - g4view
Multiplatform toolkit

Guy Barrand
https://github.com/gbarrand/g4view

Performance of Geant4 in WASM
Text based input

Szymon Kania

2023
https://github.com/ostatni5/geant4-wasm-performance

https://medium.com/@saurvs/compiling-geant4-to-webassembly-cb124b75600d
https://github.com/cvmfs-contrib/cvmfs-emscripten
https://github.com/gbarrand/g4view
https://github.com/ostatni5/geant4-wasm-performance

Our early results

Single process Native vs WebAssembly in browser

Initialization time ~x2 slower than Native

Simulation time ~x2.7 slower than Native

Scaling of time with problem size almost the same as Native

Szymon Kania - https://github.com/ostatni5/geant4-wasm-performance

Native Wasm
Init: ~1.8s ~3.5s
Sim: ~5.7s ~13s
Init + Sim: ~7.6s ~17s

https://github.com/ostatni5/geant4-wasm-performance

Our visualization attempt

Data processing requires a lot of work

Differences in data format implementation could impact performance

Yaptide - research platform

The aim:

To provide a platform assisting MC

simulations.

Focus on:

● advancing hadrontherapy

● particle transport simulation

Main features:

● Simulations of particle interaction
with matter

● Pushing forward research in medical
physics: optimising not only dose

● Evaluation of treatment plan quality

● In-silico studies for design of
experiments

Yaptide - research platform

https://yaptide.github.io/web_dev/ - development version

https://yaptide.github.io/web_dev/

Yaptide - research platform

Overview:

● no authentication needed

● works on github-pages

● input files can be manually executed

locally or on HPC

● ongoing work to support TOPAS and

FLUKA MC codes

● interactive results preview using JSROOT

library

Towards GATE

Lorem
ipsum

● Technically: OpenGate Python code should

be compiled to WASM (pyodide?)

Core Geant4 code stays the same

● probably a lot of effort to adjust all

CMake configuration

● Downloading data files - to be handled

efficiently

This work was supported by the EuroHPC PL infrastructure funded at the Smart Growth Operational
Programme (2014-2020), Measure 4.2 under the grant agreement no. POIR.04.02.00-00-D014/20-00

Projects Performance of Geant4 in WASM and Yaptide
were developed for the purposes of Jakub Niechaj and Szymon Kania's diploma theses.

Final slide

