The benefits of particle transport simulations in a web browsers.

Leszek Grzanka^{1,2,3}, Szymon Kania², Jakub Niechaj²

1 IFJ PAN Kraków, 2 ACK Cyfronet, 3 AGH Kraków

GATE Scientific Meeting 2023 25.04.2023

GATE and Jupyter Notebooks

Jupyter Notebooks eliminate the need for console use and provide a more accessible interface for GATE users.

Access GATE from any web browser with the convenience of Jupyter Notebooks.

However, users may still face challenges with installation, including downloading Python and large GATE binaries.

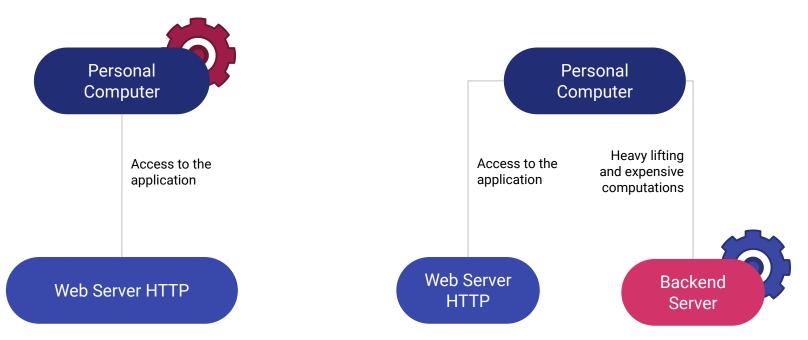
Compatibility issues with different operating systems (e.g. Windows, Mac OSX with M1 CPUs) may also be a concern for users.

Full web migration

Apps that run on the internet

Accessible through a web browser

No installation or console required


Works on any OS, easy to use and update

Types of Web Applications

Fully client side applications

Client + backend server applications

Types of Web Applications

Fully client side applications

Client + backend server applications

CO Google Collab

File Help	+ - 100% Fit 🕀 🌹	B File Edit View History Tools People	Help		
xes	•	CO Hello, Colaboratory × CO Overview of Cola	abo 🗙 🔪 🔄		
Image 2.0		← → C Secure https://colab.research.googl	🗲 $ ightarrow$ C 🔒 Secure https://colab.research.google.com/notebooks/welcome.ipynb#scrollTo=9J7p406abzgl 🔄 🕸 🦉 👰 🐲		
Default Dataset 1.5 - feasurements 1.0		CO Hello, Colaboratory 🖻			
ataset 0.5-		File Edit View Insert Runtime Tools F	Help COPY TO DRIVE 🛃 DISCARD CHANGES CONNECT		
Rename Dataset > 0.0	[609.24, 445.10	Table of contents Code snippets X			
-0.5 View Data Clear Data -1.0	Automatic Extraction Mask Box Pen Eras	Welcome to Colaboratory!	Welcome to Colaboratory!		
Data Points: 144 -1.5	Color Foreground Color	GPU Support (NEW!)	Colaboratory is a Google research project created to help disseminate machine le and research. It's a Jupyter notebook environment that requires no setup to use a		
-2.0	Distance 120 Filter Colo	Python 3	the cloud.		
-2.00 1 2	3 4 5 6 Algorithm Averaging Wir	ndow TensorFlow execution	Colaboratory notebooks are stored in <u>Google Drive</u> and can be shared just as you Docs or Sheets. Colaboratory is free to use.		
	ΔΥ 10 Px	Visualization	For more information, see our FAQ.		

Key benefits of running simulations in a browser

No installation or setup required

There is no need to install any software on your computer, making it a convenient option for users with no technical experience.

2

Small scale testing and improvements

Users can test their input and optimize their parameters on a small scale before submitting larger jobs to high-performance computing systems.

Easy to share or present results

Scientists can easily share simulation results and the input used to generate those results, which can foster collaboration and more efficient research.

Benefits outreach and education

Prepared examples can be used to showcase the simulations, making it easier for people to understand the concept and get started with using the tool.

How can we go full client side?

Javascript

- High level programing language design to manage content for websites (animation, form submit etc.)
- Modernly used to create web applications of various sizes. From simple games to powerful editors.
- Performance is limited by web browser and you can't easily do parallel computing.

WebAssembly

- Low level binary format that is designed to be more efficient than JavaScript and can also run in a web browser.
- Application usually written first in other language.
- Application has to be downloaded every time when you (re)open tab in a browser.

How can we go full client side?

Javascript

T-Rex Chrome

WebAssembly

WASM Doom

Early attempts

Compiling Geant4 to WebAssembly

Single ExampleB1 Google Summer of Code

Saurav Sachidanand

2018

https://medium.com/@saurvs/compiling-geant4-to-webassembly-cb124b75600d

CernVM-FS

POSIX read-only I/O on CernVM-FS Reduced app size 2018

https://github.com/cvmfs-contrib/cvmfs-emscripten

Softindex - g4view

Multiplatform toolkit

Guy Barrand

Performance of Geant4 in WASM

Text based input

Szymon Kania 2023

https://github.com/ostatni5/geant4-wasm-performance

Our early results

Single process Native vs WebAssembly in browser

Initialization time ~x2 slower than Native

Simulation time ~x2.7 slower than Native

Scaling of time with problem size almost the same as Native

	Native	Wasm
Init:	~1.8s	~3.5s
Sim:	~5.7s	~13s
Init + Sim:	~7.6s	~17s

Our visualization attempt

C → C ∩ ⊕ http://localhost.8000/example/rendering				🛛 🔻 🌰 Pryv	watna
	🕞 🔂 Elementy Konsola Źródła Sieć W	ydajność Pamięć i	Aplikacja Zabezpieczenia	» 🗘 :	
Run	IF ⊗ top ▼				
	Pre-compound Low energy (MeV)	8.1		worker.js:25	
	Worker 1: print Pre-compound low energy (MeV)		0.1	script.js:66	^
	Type of de-excitation inverse x-section			worker.js:25	
	Type of de-excitation factory	Evaporation		worker.is:25	
	Worker 1: print Type of de-excitation inverse >			script.js:66	
	Worker 1: print Type of de-excitation factory		Evaporation	script.js:66	
	Number of de-excitation channels			worker.js:25	
	Worker 1: print Number of de-excitation channel			script. js:66	
	Min excitation energy (keV)	9.81		worker.js:25	
	Min energy per nucleon for multifragmentation (worker.is:25	
	Worker 1: print Min excitation energy (keV)		0.01	script.js:66	
	Level density (1/MeV)	9.1		worker.js:25	
	Time limit for long lived isomeres (ns)	1e+12		worker.js:25	
	Worker 1: print Min energy per nucleon for mult		1-105	script, is:66	
	Internal e- conversion flag	1	/ 10/05	worker.is:25	
	Worker 1: print Level density (1/NeV)		0,1	script.js:66	
	Worker 1: print Time limit for long lived isome		10+12	script.is:66	
	Store e- internal conversion data	nes (ns)	10+12		
	Worker 1: print Internal e- conversion flag	0		worker.js:25	
	Electron internal conversion ID			script.js:66	
	Worker 1: print Store e- internal conversion da		8		
	Korker 1: print Store e- internal conversion da Correlated gamma emission flag	6 0		script.js:66	
	Worker 1: print Electron internal conversion II				
				script.is:66	
	Max 2J for sampling of angular correlations Worker 1: print Correlated gamma emission flag		8		
	worker 1: print Correlated gamma emission +lag				
			10		
	Worker 1: print Max 2J for sampling of angular	correlations	10		
	The run no: 1000				
	Worker 1: print				
	Simulation run: 1103.277099609375 ms			example81.js:1287	
	Worker 1: print				
	Worker 1: print The run no: 1000				
	19520 1103.2ms				
	delte				
	runManager				
	Worker 1: render 19520				
	Worker 1: print 1103.2ms				
	Worker 1: print delte				
	Worker 1: print runManager				
		~ ~ ~	🖪 🔥 Resetuj ————————————————————————————————————	100.97	10.10
			🛥 😽 resetuj 🗕 🕖 🗕	-100 %	1213

Data processing requires a lot of work

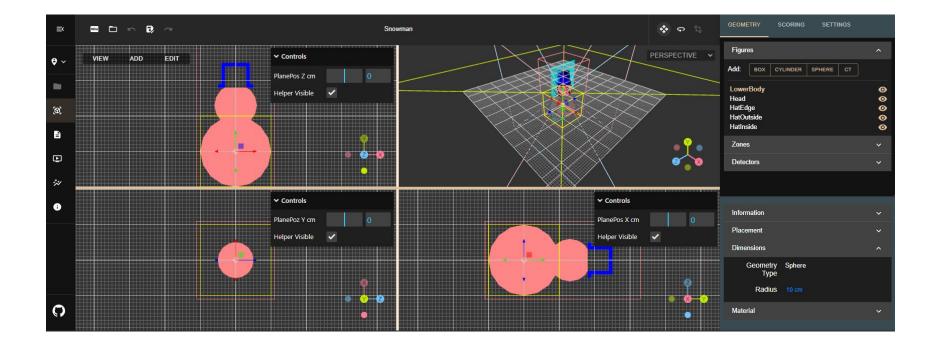
Differences in data format implementation could impact performance

Yaptide - research platform

The aim:

To provide a platform assisting MC simulations.

Focus on:


- advancing hadrontherapy
- particle transport simulation

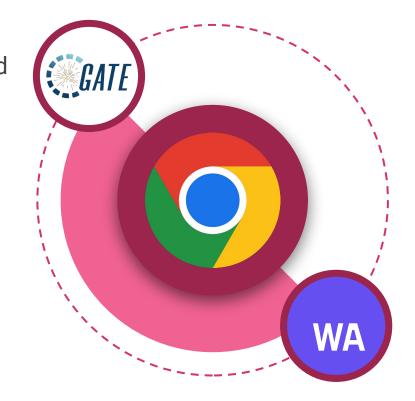
Main features:

- Simulations of particle interaction with matter
- Pushing forward research in medical physics: optimising not only dose
- Evaluation of treatment plan quality
- In-silico studies for design of experiments

Yaptide - research platform

https://yaptide.github.io/web_dev/ - development version

Yaptide - research platform


Overview:

- no authentication needed
- works on github-pages
- input files can be manually executed locally or on HPC
- ongoing work to support TOPAS and FLUKA MC codes
- interactive results preview using JSROOT library

	C I a yaptide.githt = □ • Q Search Google • Q	
=<	Í	Proton pencil beam in
	GENERATE FROM EDITOR	water
0 v		Thu, 10:15:05 - ?
н.	UPLOAD FILES or drag and drop it here.	
(0)		RUNNING
B	DOWNLOAD ALL	
Ð	geo.dat DOWINLOAD CLEAR	requestedPrimaries: 1600000
***		ntask: 16
0	0 0 Proton pencil beam in water RCC 1 0.0 0.0 0.0 0.0 0.0 20.0 5.0	inputType: YAPTIDE_PROJECT
	RCC 2 0.0 0.0 -0.5 0.0 0.0 22.0	
	RCC 3 5.5 0.0 0.0 -1.5 0.0 0.0 24.0 6.0	platform: DIRECT server: Yaptide
	END 001 +1 002 +2 003 -2 +3 -1 END 1 2 3 1 1000 0	simType: SHIELDHIT
	mat.dat DOWNLOAD CLEAR	Estimated time remaining 00.00.04.41
•	nput files generated	

Towards GATE

- Technically: OpenGate Python code should be compiled to WASM (pyodide?)
 Core Geant4 code stays the same
- probably a lot of effort to adjust all
 CMake configuration
- Downloading data files to be handled efficiently

Final slide

This work was supported by the EuroHPC PL infrastructure funded at the Smart Growth Operational Programme (2014-2020), Measure 4.2 under the grant agreement no. POIR.04.02.00-00-D014/20-00

Projects Performance of Geant4 in WASM and Yaptide

were developed for the purposes of Jakub Niechaj and Szymon Kania's diploma theses.