Hybrid numerical simulation to model pulsar magnetospheres

Adrien Soudais, Benoît Cerutti

adrien.soudais@univ-grenoble-alpes.fr

European Research Council

ContextApproachesHybrid approachResultsCanonical pulsar

Rotating, highly magnetized neutron star

Canonical radio pulsar: \circ Surface magnetic field: $B_* = 10^9 - 10^{14} G$ \circ Pulsed emission

• Pulsed emission

• Spin period: $P = 1 \,\mathrm{ms} - 1 \,\mathrm{s}$

Conclusion

 (\mathbb{C})

Sept, 6th, 2023

Adrien Soudais

Hybrid numerical simulation to model pulsar magnetospheres \sim Z

Numerical approaches

- Skin depth: $\delta_E = 1 \mathrm{cm} 1 \mathrm{m}$
- Star radius: $r_* = 10 \mathrm{km}$
- Light cylinder radius: $R_{LC} = 50 5000 \mathrm{km}$
- Realistic scale separation: 10^{5-7}
- PIC simulations are rescaled
 - Scale separation: 10^3
- Are results of PIC simulations still **valid** for larger scale separations?

Context	Approaches	Hybrid approach	Results	Conclusion
Compariso	n			
	Method	PIC	FFE	
	Particle acceleration			
	Large scales			
	Microphysics			
	Energy dissipation			
	Computational time			

Context	Approaches	Hybrid approach	Results	Conclusion
Comparisc	n			
	Method	PIC	FFE	
	Particle acceleration			
	Large scales			
	Microphysics			
	Energy dissipation			
	Computational time			

Context	Approaches	Hybrid approach	Results	Conclusion
Compariso	n			
	Method	PIC	FFE	
	Particle acceleration			
	Large scales			
	Microphysics			
	Energy dissipation			
	Computational time			

Context	Approaches	Hybrid approach	Results	Conclusion
Compariso	n			
	Method	PIC	FFE	
	Particle acceleration			
	Large scales			
	Microphysics			
	Energy dissipation			
	Computational time			

Context	Approaches	Hybrid approach	Results	Conclusion
Compariso	n			
	Method	PIC	FFE	
	Particle acceleration			
	Large scales			
	Microphysics			
	Energy dissipation			
	Computational time			

Context	Approaches	Hybrid approach	Results	Conclusion
Comparise	on			
	Method	PIC	FFE	
	Particle acceleration			
	Large scales			
	Microphysics			
	Energy dissipation			
	Computational time			

Context	Approaches	Hybrid approach	Results	Conclusion
Motivatio	ons			
Compler	mentarity	Method	PIC	FFE
betwee'n PI(PIC and FFE!	Particle acceleration		
		Large scales		
Build a HYBF	RID method	Microphysics		
combining same nu framework t	both in the umerical to bridae the	Energy dissipation		
scale separation gap		Computational time		NH COMPANY

Hybrid method

Context Approaches Hybrid approach Results Conclusion Hybrid criterion

• Domain separation criterion:

Magnetic flux function Ψ

$$= \iint \mathbf{B} \cdot \mathrm{d} \mathbf{S}$$

- \circ lsocontours of Ψ = magnetic field lines
- Transition zone
- Separatrix inside the PIC domain
- Computing power focused on the current sheet

Journées PNHE

Adrien Soudais

Hybrid numerical simulation to model pulsar magnetospheres 17

• Domain separation criterion:

Magnetic flux function Ψ

$$= \iint \mathbf{B} \cdot \mathrm{d}\mathbf{S}$$

- \circ lsocontours of Ψ = magnetic field lines
- Transition zone
- Separatrix inside the PIC domain
- Computing power focused on the current sheet
- If $\Psi \in [\Psi_0, \Psi_3]$: Ψ_{PIC}

Else:

VFFE

Adrien Soudais

Adrien Soudais

Aligned dipole

Simulation parameters

Resolution	(r,θ)=(4096,4096)
Star radius	$r_* = 10 \mathrm{km}$
Inner edge	$r_{min} = r_*$
Light cylinder	$R_{LC} = 5r_* (P = 1ms)$
Outer edge	$r_{Max} = 3R_{LC}$
Field amplitude	$B_0 = 10^6 \mathrm{G}$
Particle injection	Extracted from the NS by E
Radiative losses	ON

Simulation parameters

Scale separation	$d_e/r_* = 2 \times 10^{-5}$
Plasma composition	Pairs (+ creation) & protons
Mass ratio	$m_i/m_e = 1836$
Polar cap Lorentz factor	$\gamma_{pc} = 1,33 \times 10^7$
Threshold	$\gamma_{thr} = 0,05\gamma_{pc}$
Secondary Lorentz factor	$\gamma_s = 0, 1\gamma_{thr}$

Magnetosphere

heres

23

Adrien Soudais

[Soudais, A. & Cerutti, B., (in prep.)]

[Soudais, A. & Cerutti, B., (in prep.)]

Context Approaches Hybrid approach Results Conclusion

[Soudais, A. & Cerutti, B., (in prep.)]

Context

Approaches

lybrid approac

Results

Conclusion

Fermi pulsars (3PC)

Context

Approaches

Hybrid approa

Results

Conclusion

Fermi pulsars (3PC)

On going run: 10⁷G Weak millisecond pulsar in the Fermi-LAT range

Adrien Soudais

Hybrid numerical simulation to model pulsar magnetospheres 30

Conclusion & Perspectives

- Recover magnetosphere, plasmoids, separatrix, spectra
- One ms pulsar with 10⁷ G simulation to scale
- Direct evidence of synchrotron and gamma emissions (Fermi 3PC)
- On going developments : black hole magnetospheres (GRPIC+GRFFE)