

Detecting and characterizing dark matter subhalos with the Cherenkov Telescope

Array

Christopher Eckner (eckner@lapth.cnrs.fr)

on behalf of Veronika Vodeb, Tejas Satheesh, Francesca Calore, Gabrijela Zaharijas, Moritz Hütten, Pierrick Martin and the CTA Consortium – Journées PNHE 2023, 6 - 8 September 2023, Paris –

Find out more about the activities of LAPTh's AstroCosmo group at: https://astrocosmolapth.wordpress.com/

We gratefully acknowledge financial support from the agencies and organizations listed here: <u>http://www.cta-observatory.org/consortium_acknowledgments</u>

1. Shearling

Brief introduction of Galactic dark matter subhalos

[V. Springel et al., MNRAS 391 (2008)]

The concordance model of cosmology ΛCDM predicts bottom-up structure formation in the universe.

Massive objects like galaxies are the results of mergers of less massive, virialised objects.

Galactic dark matter halo dark matter sub-halo dark matter sub-sub-halo dark matter sub-sub-sub-halo dark matter sub-sub-sub-sub-halo dark matter sub-sub-sub-sub-halo

minimal gravitationally bound dark matter halo

Journées PNHE 2023

Journées PNHE 2023

Rendering dark matter subhalos luminous

Darling candidate for particle dark matter: Weakly Interacting Massive Particles (WIMPs). Even feeble couplings of dark matter to the Standard Model can produce observable signatures!

The expected gamma-ray signal:

 ho_{χ} — dark matter density profile Navarro-Frenk-White (NFW)

 dN_{γ}/dE_{γ} – gamma-ray spectrum per annihilation event per energy (for us: $\chi\chi \rightarrow b\bar{b}$ from [M. Cirelli et al., JCAP 03 (2011) 051])

Journées PNHE 2023

The study

Motivation:

- Current gamma-ray source catalogues (*Fermi*-LAT, IACTs) contain up to 1/3 unidentified sources
 –> dark matter sub halos may be part of them, so for CTA
- Understand the potential to discriminate exotic extended gamma-ray sources from known classes

The study

Motivation:

- Current gamma-ray source catalogues (*Fermi*-LAT, IACTs) contain up to 1/3 unidentified sources
 —> dark matter sub halos may be part of them, so for CTA
- Understand the potential to discriminate exotic extended gamma-ray sources from known classes

Goal:

 Anticipate the potential of CTA's Galactic Plane Survey (GPS) for their study: Higher exposure than large-scale extragalactic survey + reasonably high abundance of subhalos (model-dependent)

Journées PNHE 2023

The study

Motivation:

- Current gamma-ray source catalogues (*Fermi*-LAT, IACTs) contain up to 1/3 unidentified sources
 - —> dark matter sub halos may be part of them, so for CTA
- Understand the potential to discriminate exotic extended gamma-ray sources from known classes

Goal:

 Anticipate the potential of CTA's Galactic Plane Survey (GPS) for their study: Higher exposure than large-scale extragalactic survey + reasonably high abundance of subhalos (model-dependent)

Methodology:

- Subhalo models incorporating tidal effects (baryonic physics) to bracket uncertainties
- Simulation of CTA observations and instrument response function with gammapy/ctools
 - > three-dimensional template-based analysis
 - > specifications of CTA's GPS following consortium publication
 - > similar to our study of pulsar halos in the GPS: [C. Eckner et al., MNRAS 521 (2023) 3]
- Application of results to single objects and entire subhalo population

Journées PNHE 2023

The CTA Galactic plane survey

The Galactic plane survey assigns different exposure times to different sky regions.

Observation pointing strategy:

- double row, non equilateral tiling of the plane
- ~30 min per position
- Pointing position schedule adopted from CTA GPS consortium paper (at <u>https://github.com/cta-observatory/cta-gps-simulation-paper</u> plus the full synthetic population model)

Simulations:

- based on the Alpha-layout of CTA and its IRFs (prod5-v0.1)
 - -> includes instrumental background
- astrophysical background component: interstellar emission according to [De la Torre Luque et al., A&A 672, A58 (2023)] (Base-Max)
- gammapy (0.18.2) + ctools (1.6.3)

arrav

[Remy et al., ICRC 2021 PoS 395 (2021) 886]

Interplay of baryonic physics and DM subhalos

Subhalos are subject to the gravitational potential of the Milky Way's stellar disc and bulge.

Tidal effects: mass loss (stripping), disruption

[E. D'Onghia et al., Nature 460, 605–607 (2009)]

We follow the model derived from prescription in [M. Stref and J. Lavalle, PRD 95, 063003]:

- Stripping effects from Galactic potential and shocking effects from the disc are included.
- Full disruption of subhalo may occur or not (within the uncertainty of simulations), hence two bracketing cases (fragile and resilient sub halos)

Journées PNHE 2023

Spectral sensitivity to single subhalos

Discrimination from other TeV-bright objects

Suppose we detect a new source, which cannot be associated. When can we exclude known astrophysical source classes, like pulsar wind nebulae, binaries or supernova remnants?

Recipe:

- Inject DM signal at fixed cross-section value into mock data
- Fit a nested model of (DM subhalo + alternative spatial model).
- Retrieve cross-section at which DM is significantly preferred.

Cross-section for detection times less than a factor of 2 sufficient to exclude point-like source or Gaussian profile!

Angular decomposition to study extended profile becomes feasible for fluxes where even other novel source classes like pulsar halos (model from [C. Eckner et al., MNRAS 521 (2023) 3]) can be discriminated.

Journées PNHE 2023

Accessibility of the sub halo population

There will be more than one subhalo within the GPS band. What can we say about the entire population?

Journées PNHE 2023

Summary

- CTA's Galactic plane survey will uncover many extended gamma-ray sources along the Galactic plane; some of them will remain unidentified.
- The cold dark matter scenario predicts the presence of dark matter subhalos along the Galactic plane that may produce TeV emission due to DM pair annihilation.
- We provide a missing study of the potential of CTA's GPS to detect DM subhalos.
- We demonstrated that the GPS' sensitivity is promising to detect the bright parts of the subhalo population for $\langle \sigma v \rangle \geq 10^{-24}$ cm³ s⁻¹.
- Our results reveal prospects that are comparable to those of other CTA survey campaigns.

- An average representative of the subhalo population becomes detectable for ⟨σv⟩ ≥ 3 ⋅ 10⁻²³ cm³ s⁻¹.
- A genuine subhalo, once detected, is easily distinguishable from a point-like source or Gaussian profile reducing the impact of source confusing along the plane.