γ-ray X-ray binaries as cosmic ray and neutrino sources

Dimitris Kantzas LAPTh/CNRS

Enigmass

Cosmic-ray sources?

Cosmic-ray sources?

Galactic: SNe/SNRs?

Cosmic-ray sources?

ope · ACS

Cassiopeia A Supernova Remnant

Galactic: SNe/SNRs?

Extragalactic: AGN, star-forming galaxies?

 $p + p(\gamma) \rightarrow p + a\pi^{o} + \beta(\pi^{+} + \pi^{-})$

γ-ray emission ...

... to HESS (TeV) ... Aharonian et al. 2016

from Fermi/LAT (GeV) ...

and recently by Thibet ASy & LHAASO (PeV)

γ-ray emission ...

... to HESS (TeV) ... Aharonian et al. 2016

from Fermi/LAT (GeV) ...

Astrophysical origin or

Diffuse emission or point

sources?

beyond the Standard Model physics?

and recently by Thibet ASy & LHAASO (PeV)

Stellar-mass black holes with jets

Stellar-mass black holes with jets

- both persistent and transient
- strong magnetic fields
- accelerate particles to high energies
- emit in γ-rays

on star

Image Credit: Corral-Santana et al. 2016

accre

quiescent black-hole X-ray binary (qBH-XRB)

 M_{bh} : 6.61 M_{\odot} distance: 1.1 kpc inclination: 51 deg jet power: 10⁻⁵ Edd*

*Eddington luminosity: ~10³⁸ erg/s (M_{bh}/M_{\odot})

quiescent black-hole X-ray binary (qBH-XRB)

 M_{bh} : 6.61 M_{\odot} distance: 1.1 kpc inclination: 51 deg jet power: 10⁻⁵ Edd

Multiwavelength constraints from A0620–00

quiescent black-hole X-ray binary (qBH-XRB)

 M_{bh} : 6.61 M_{\odot} distance: 1.1 kpc inclination: 51 deg jet power: 10⁻⁵ Edd

Population of BH-XRBs: disc

Population of BH-XRBs: bulge

Black hole masses based on Olejak et al. 2020

- CR propagation
 - contribution to the CR spectrum
 - \circ contribution to the γ -ray spectrum
 - contribution to the neutrino spectrum

Image Credit: Nick Risinger

- contribution to the CR spectrum
- contribution to the γ -ray spectrum
- contribution to the neutrino spectrum
- prompt (intrinsic) emission
 - \circ contribution to the γ -ray spectrum
 - contribution to the neutrino spectrum

mage Credit: Nick Risinger

- contribution to the CR spectrum
- \circ contribution to the γ -ray spectrum
- ← contribution to the neutrino spectrum
- prompt (intrinsic) emission
 - \circ contribution to the γ -ray spectrum
 - contribution to the neutrino spectrum

Image Credit: Nick Risinger

Contribution of BH-XRBs to the CR proton spectrum

100.000 qBH-XRBs

Evoli et al. 2017, 2018

Contribution of BH-XRBs to the CR proton spectrum

100.000 qBH-XRBs

Evoli et al. 2017, 2018

Contribution of BH-XRBs to the CR electron spectrum

- contribution to the CP spectrum
- contribution to the *v*-ray spectrum
- contribution to the neutrino spectrum
- prompt (intrinsic) emission
 - \circ contribution to the γ -ray spectrum
 - contribution to the neutrino spectrum

mage Credit: Nick Risinger

promp

10.000 sources following a 3D Boxy Bulge distribution (Cao et al. 2013)

10.000 sources following a 3D Boxy Bulge distribution (Cao et al. 2013)

<0.01% in the GeV regime

10.000 sources following a 3D Boxy

Bulge distribution (Cao et al. 2013)

~20% in the TeV regime

Prompt emission from the <u>disc</u> qBH-XRBs

100.000 sources following a 2D Lorimer distribution (Lorimer et al. 2006)

Prompt emission from the <u>disc</u> qBH-XRBs

 10^{4}

Prompt emission from the <u>disc</u> qBH-XRBs

100.000 sources following a 2D Lorimer distribution (Lorimer et al. 2006)

<0.01% in the GeV regime

Prompt emission from the disc qBH-XRBs

 10^{2}

CR propagation

contribution to the CP spectrum

contribution to the *v*-ray spectrum

contribution to the nutrino spectrum

• prompt (intrinsic) emission

 \circ contribution to the γ -ray spectrum

contribution to the neutrino spectrum

mage Credit: Nick Risinger

Conclusions

- quiescent black-hole XRBs may contribute:
 - ~0% to the CR proton spectrum
 - ~0% to the CR electron spectrum
 - with prompt emission:
 - up to ~ 100% to the X-ray spectrum (100.000 with 10⁻⁵ Eddington luminosity)
 - up to ~ 0.01% to the GeV γ-ray spectrum
 - up to ~ 100% to the TeV γ-ray spectrum

Extra Slides

Contribution of black hole XRBs to the CR proton spectrum

Contribution of black hole XRBs to the y-ray spectrum

HERMES High-Energy Radiative MESsengers Dundovic et al. 2021 $p + p(\gamma) \rightarrow p + a\pi^{o} + \beta(\pi^{+} + \pi^{-})$

 π^0

 π^0 , HI, $E_{\gamma} = 126$ GeV, nside=256

Longitude l [deg]

 ${\rm GeV}^{\rm 2e-07} {\rm Se}^{\rm 5e-07} {\rm s}^{\rm 8e-07} {\rm cm}^{-2}$ 1e-06

-20

Latitude b [deg]

 \rightarrow

 2γ

20

40

60

Kantzas et al. 2023b

Contribution of black hole XRBs to the neutrino spectrum

Kantzas et al. 2023b

Contribution of black hole XRBs to the neutrino spectrum

Contribution of black hole XRBs to the neutrino spectrum

Particle acceleration uncertainties

Kantzas et al. 2023b

HMVE: Hornes XRE