

Polarization properties of the high-energy emission of X-ray binaries with INTEGRAL

Studies of MAXI J1535–571, MAXI J1820+070 & MAXI J1348–630

FLORIANE CANGEMI J. Rodriguez, T. Belloni, C. Gouiffès, V. Grinberg, P. Laurent, P.-O. Petrucci, J. Wilms

> Journées PNHE 07/09/2023

X-ray binaries

Black hole or neutron star

Ejection phenomenons

Heating and X-ray emission

X-ray binaries spectral states Hard state

X-ray binaries spectral states Soft state

Accretion disk

Floriane Cangemi — Journées PNHE

Multicolor black-body Flux 1keV Energy

X-ray binaries spectral states Soft state

Accretion disk

Multicolor black-body Flux 1keV Energy

Floriane Cangemi — Journées PNHE

What is the nature of the high-energy emission? From which medium does it come from?

What is the nature of the high-energy emission? From which medium does it come from?

Floriane Cangemi — Journées PNHE

1. Synchrotron émission from the jets base

Polarization fraction expected Π ~ 75% for a very ordered magnetic field *Rybicki & Lightman 1986*

What is the nature of the high-energy emission? From which medium does it come from?

Polarization fraction expected Hybrid distribution of electrons: $\Pi \sim 5\%$ Non-thermal distribution of electrons: $\Pi \sim 20\%$ Beheshtipour+20

Floriane Cangemi — Journées PNHE

2. Non-thermal electrons from the corona

What is the nature of the high-energy emission? From which medium does it come from?

INTEGRAL

Floriane Cangemi — Journées PNHE

IBIS (30–1000 keV) *JEM–X* (3–30 keV) *SPI* (20–8000 keV)

Observations

MAXI J1535-571

Floriane Cangemi — Journées PNHE

Observations

MAXI J1535-571

MAXI J1820+070

MAXI/GSC Countrate 2-20 keV (c/s/cm²)

Floriane Cangemi — Journées PNHE

Observations

MAXI J1535-571

MAXI/GSC Countrate 2-20 keV (c/s/cm²) 0 c b b 0 8 MAXI J1820+070

MAXI J1348-630

Floriane Cangemi — Journées PNHE

'GSC Countrate keV (c/s/cm²) MAXI 2-20

MAXI/GSC Countrate 2-20 keV (c/s/cm²)

 \mathbf{O}

8

HIMS

58000

58520

Spectral analysis

Spectral analysis

Polarization with INTEGRAL/IBIS

ISGRI

Floriane Cangemi — Journées PNHE

Distribution of the detected photons $N(\phi) = C[1 + a_0 \cos(2(\phi - \phi_0))]$

For a source polarized at an Angle $PA = \phi_0 - \pi/2$

And a Polarization Fraction $\Pi \propto a_0$ Signal to noise higher than 12

7

Polarization with INTEGRAL/IBIS

ISGRI

PICsiT

Floriane Cangemi — Journées PNHE

Distribution of the detected photons $N(\phi) = C[1 + a_0 \cos(2(\phi - \phi_0))]$

For a source polarized at an Angle $PA = \phi_0 - \pi/2$

And a Polarization Fraction $\Pi \propto a_0$ Signal to noise higher than 12

7

Results

MAXI J1535-571

MAXI J1820+070

MAXI J1348-630

Floriane Cangemi — Journées PNHE

SNR (300–1000 keV)

8.7

4.9

94.1

30.7

10.4

4.1

HIMS SIMS

HARD

HARD INTERMEDIATE SOFT

Results — MAXI J1820+070

Floriane Cangemi — Journées PNHE

300—1000 keV

9

Results — MAXI J1348–630

Floriane Cangemi — Journées PNHE

300—1000 keV

9

Interpretation

Floriane Cangemi — Journées PNHE

MAXI J1535–571 High-energy tail detected HIMS $\Gamma = 2.1^{+0.4}_{-0.5}$ SIMS $\Gamma = 2.0^{+0.4}_{-0.4}$

Polarization too few signal too few signal

Synchrotron spectrum from Russell+2020 $\alpha = 0.83 \pm 0.09$

X-ray data consistent with synchrotron emission BUT Large uncertainties + no polarization information **Cannot firmly conclude...**

Interpretation

Floriane Cangemi — Journées PNHE

MAXI J1820+070 High-energy tail detected HARD $\Gamma = 2.09^{+0.03}_{-0.03}$

Polarization $\Pi = 26 \pm 9\%$

X-shooter data from Rodi+2021

Simple extrapolation not consistent with synchrotron emission

Polarization fraction consistent with either the corona or the jets

Interpretation

Floriane Cangemi — Journées PNHE

MAXI J1348–630 High-energy tail detected HARD $\Gamma = 2.0^{+0.3}_{-0.3}$

Polarization $\Pi > 56\%$

Radio data from *Carotenuto*+2021 Hypothesis on the synchrotron break and thin part

X-ray data consistent with synchrotron hypothesis AND Large polarization fraction **Point towards jets origin**

Conclusion and perspectives

MAXI J1535-571

Could be consistent with jets but we **cannot conclude** without solid polarization measurements.

MAXI J1820+070

Could be consistent with **jets or corona**, need further investigations with physical modelizations.

MAXI J1348-630

High fraction of polarization **consistent with jet synchrotron emission**.

Conclusion and perspectives

MAXI J1535-571

Could be consistent with jets but we cannot conclude without solid polarization measurements.

MAXI J1820+070

Could be consistent with jets or corona, need further investigations with physical modelizations.

MAXI J1348-630

High fraction of polarization consistent with jet synchrotron emission.

Thank you!

Spectral analysis

Search for an additional non-thermal component

Floriane Cangemi — Journées PNHE

