

Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151

V. E. Gianolli and D. E. Kim on behalf of the IXPE collaboration

> Journées PNHE 2023 07/09/2023

UNIVERSITÉ UNIVERSITÀ FRANCO 1 TALO ITALIENNE FRANCESE

1/17

IXPE: from I, Q and U spectra to PD/PA

Time for presentation...

• Changing Look AGN:

- z = 0.003326
- MBH ~ $4.6 \times 10^7 M_{\odot}$ (from optical and UV reverberation, Bentz et al., 2006)
- $\lambda_{Edd} \sim 1\%$ Keck et al., 2015

* strong and variable optical-UV continuum with broad H β component and 1<[OIII]/H β <4 ⁺ strong and variable optical-UV continuum with weak broad H_β component and 4<[OIII]/H_β

Antonucci & Cohen 1983; Penston & Perez 1984; Puccetti et al. 2007; Shapovalova et al. 2008, Shapovalova et al. 2012; Beuchert et al. 2017a

optical type 1.5* at high flux states (up to $F_{0.5-10 \text{ keV}} \sim 2.8 \times 10^{-10} \text{ erg s}^{-1} \text{ cm}^{-2}$)

optical type 1.8⁺ at low fluxes states ($F_{0.5-10 \text{ keV}} \sim 8.7 \times 10^{-11} \text{ erg s}^{-1} \text{ cm}^{-2}$)

3/17

Time for presentation...

- Complex absorption structure from neutral and ionised gas (Beuchert et al. 2017a)
- Strong Fe Ka emission line:

- Below 2 keV the soft X-ray emission is dominated by emission lines (NLR) (Schurch et al. 2004)
- Significant spectral variability above ~1 keV

- In the past... with a weak relativistic component (Zoghbi et al. 2019)
- Now... single Gaussian with $\sigma = 40 \pm 10$ eV and EW = 100 \pm 6 eV

uncertainties at 68% c.l. contours at 68%, 90% and 99% c.l.

Energy range (keV)	$\Pi_{\rm X} \pm 1\sigma$ (%)	$\psi_{\rm X} \pm 1\sigma$ (deg)
2.0 - 8.0	4.9 ± 1.1	86 ± 7
2.0 - 3.5 3.5 - 5.0 5.0 - 8.0	4.3 ± 1.6 5.0 ± 1.4 7.4 ± 1.9	42 ± 11 99 ± 8 88 ± 7

X-ray polarization

uncertainties at 68% c.l. contours at 68%, 90% and 99% c.l.

Energy range (keV)	$\Pi_{\rm X} \pm 1\sigma$ (%)	$\psi_{\rm X} \pm 1\sigma$ (deg)
2.0 - 8.0	4.9 ± 1.1	86 ± 7
2.0 - 3.5	4.3 ± 1.6	42 ± 11
3.5 - 5.0	5.0 ± 1.4	99 ± 8
5.0 - 8.0	7.4 ± 1.9	88 ± 7

The obtained PA is well aligned with the one in UV, optical, NIR and nuclear radio jet, PA ~ 83°

X-ray polarization

		-	
Parameter	Value	-	
CLOUDY (Photoionized	d emitter)	-	
$\log U$	1.35 ± 0.01	Imple	emented
$\log(N_{\rm H} /{\rm cm}^{-2})$	21.63 ± 0.02	•	
PC 1 (Neutral abso	orber 1)		
$\log(N_{\rm H}/{\rm cm}^{-2})$	10.49 ± 0.04		
Cf	0.78 ± 0.01		
PC 2 (Neutral abso	orber 2)		
$\log(N_{\rm H} /{\rm cm}^{-2})$	4.36 ± 0.01		I Bat
Cf	0.95 ± 0.01		
WA (Warm absorber)			(c
$\log(N_{\rm H} /{\rm cm}^{-2})$	$13.60^{+0.92}_{-0.86}$		
$\log(\xi / erg cm s^{-1})$	4.12 ± 0.02		
BORUS 1/2 (Neutral res	flector 1/2)		
$\log(N_{\rm H} /{\rm cm}^{-2})$	24.45 ± 0.01		
$A_{\rm Fe}$	0.62 ± 0.01		
norm	0.09 ± 0.01		
nthcomp (Comptonized prim	nary continuum)		
Γ	1.85 ± 0.01		
$kT_{\rm e}$ [keV]	60^{+7}_{-6}		
norm	0.09 ± 0.01		
$\log(F_{2-10 \text{ keV}} / \text{erg cm}^{-2} \text{ s}^{-1})$	-9.78 ± 0.01		
$\log(L_{2-10 \text{ keV}} / \text{erg s}^{-1})$	42.61 ± 0.01		
TRANSPORT DEVICE DEFENSION AND A TRANSPORT VIEW			

Model

from Keck et al. 2015 and Szanecki et al. 2021 works

bs*(CLOUDY + zgauss + zpcfabs*zpcfabs*zxipcf gsmooth*(BORUS_c + BORUS_l) + nthComp))

On XMM+NuSTAR

 χ^2 /d.o.f = 743/660

TBabs*(CLOUDY + zgauss + zpcfabs*zpcfabs*zxipcf (gsmooth*(BORUS_c + BORUS_l) + nthComp))

Model

Model

TBabs*(CLOUDY + zgauss + zpcfabs*zpcfabs*zxipcf (gsmooth*(BORUS_c + BORUS_l) + nthComp))

TBabs*(CLOUDY + zgauss + zpcfabs*zpcfabs*zxipcf (gsmooth*(BORUS_c + BORUS_l) + nthComp))

Model

Model

Model: polconst addition

unconstrained Ψ_P

Primary:

 $\Pi_{\rm P} < 5\%$

uncertainties at 68% c.l. upper/lower limits at 99.7% c.l.

2nd test: Ψ_R and Ψ_P differ by 90° (χ^2 /d.o.f = 1434/1265)

polarization is dominated by the reflection and the PD of the primary emission is an upper limit

Spectro-polarimetric analysis

Reflection: $\Pi_{\rm R} > 38\%$ $\Psi_{\rm R} = 96 \pm 16^{\circ}$

1st test: $\Psi_{\rm R} = \Psi_{\rm P} (\chi^2/d.o.f = 1435/1265)$

3rd test: ΠΡ fixed values for Π_R + Ψ_{P} Ψ_R and Ψ_P differ by 90° $\chi^2/d.o.f$

Spectro-polarimetric analysis

15%	20%	30%
4.1 ± 0.8 %	4.3 ± 0.8 %	4.6 ± 0.8 %
82 ± 7 °	81 ± 7 °	80 ± 8 °
1452/1266	1453/1266	1455/1266

Spectro-polarimetric analysis

- To decouple the leaked soft X-ray emission from the primary emission
 - zpcfabs*(BORUS_c + BORUS_l + nthComp)

(c*zphabs+(1-c))*(BORUS_c + BORUS_l + nthComp)

assign poleonst ($\Pi = 0$ and $\Psi = 0$) to the leaked emission

Spectro-polarimetric analysis

zpcfabs*(BORUS_ ↓ c*zphabs+(1-c))*(BOR

$\Psi_R \neq \Psi_C$: polarization is dominated by the reflection (χ^2 /d.o.f =1436/1264)

- zpcfabs*(BORUS_c + BORUS_l + nthComp)
- (c*zphabs+(1-c))*(BORUS_c + BORUS_l + nthComp)

	$\Psi_{\rm R} = \Psi_{\rm P}$	$\Psi_{\rm R} = \Psi_{\rm P} \pm 90^{\circ}$
Primary	$\Pi = 3 \pm 2 \%$ $\Psi = 88 \pm 5^{\circ}$	$\Pi = 7.7 \pm 1.5 \%$ $\Psi = 87 \pm 6^{\circ}$
Reflection	unconstrained П	П < 27%
Reflection		
χ²/d.o.f	1437/1265	1441/1265

Spectro-polarimetric analysis

$\Psi_R \neq \Psi_C$: polarization is dominated by the reflection (χ^2 /d.o.f =1436/1264)

	$\Psi_{\rm R} = \Psi_{\rm P}$	$\Psi_{\rm R} = \Psi_{\rm P} \pm 90^{\circ}$
Primary	$\Pi = 3 \pm 2 \%$ $\Psi = 88 \pm 5^{\circ}$	$\Pi = 7.7 \pm 1.5 \%$ $\Psi = 87 \pm 6^{\circ}$
Reflection	unconstrained Π	Π < 27%
χ²/d.o.f	1437/1265	1441/1265

UV-OPT-IR Polarization

Coronal geometry(ies)

'Spherical' lamppost geometry:

- spectro-polarimetric analysis

 $\Pi_{\rm P}$ in the 4-8% range

- model-independent analysis (PCUBE)

 $\Pi_{\rm x} = 4.9 \pm 1.1\%$

- expected $\Psi \perp$ disc axis

Coronal geometry(ies)

comparison with Monte Carlo radiative transfer code MONK (Zhang et al., 2019; Ursini et al., 2022; Tagliacozzo et al., in prep)

cross-check with an iterative radiation transport solver (Poutanen & Svensson, 1996; Veledina & Poutanen, 2022)

Coronal geometry(ies)

For the slab and wedge geometry:

Coronal geometry(ies)

16/17

- polarimetric results in the 2-8 keV band

- The obtained Π and Ψ exclude a 'spherical' *lamppost* geometry for the coronal
- MONK and iterative radiation transport solver simulations suggest a slab-like or wedge geometry

Future: IXPE <u>GO program</u>...

vittoria.gianolli@univ-grenoble-alpes.fr

(Harrison et al., 1986)

 10^{-3}

	Date	Obs ID	Exposure time	Net counts rate			-
XMM-A + NuSTAR-A	14/11/2012	0679780301; 60001111005	~3ks; ~62ks	~12.4cts/s; ~4.7cts/s		-	 - - - -
XMM-H	27/5/2003	143500301	12ks	~ 25.6cts/s	1 keV-1	—	-
XMM-L	10/6/2012	679780201	~6ks	~8.6cts/s	counts s ⁻	0	
XMM-N + NuSTAR+N	17/12/2022 16-18/12/2022	0921160201; 60901003002	~33ks; ~97ks	~ 17.2cts/s; 7.6cts/s	0	01	
						0	

XMM-NuSTAR spectra

Polarimetric analysis

Detection significance of the polarization properties is above 99.99% confidence level (~ 4.4σ).

Energy dependency of the polarization: hypothesis that Q and U Stokes parameters are constant via a χ^2 test

- we adopt from 2 to 12 energy bins.
- Statistically significant (> 99% c.l.) deviation from the constant behaviour in Q, when adopting three and four bins.

If 3 energy bands are considered (2.0–3.5, 3.5–5.0, and 5.0–8.0 keV):

- significant detections are found for the two higher-energy bins
- marginal detection can be claimed for the first bin
- => confirming the variability in *Q* mentioned above

(Baldini et al., 2022)

events.

Following Polarization Degree = $\Pi = \frac{\sqrt{Q^2 + U^2}}{I}$, PD and PA with associated errors are calculated

Polarization Angle =
$$\Psi = \frac{1}{2}arctg(\frac{U}{Q})$$

PCUBE analysis

- PCUBE is an algorithm of *ixpeobssim*, which is a simulation and analysis framework specifically developed for IXPE
- It computes the I-normalized Stokes parameters Q and U from the event-by-event Stokes parameters of the selected
- If the background template is provided, the algorithm can also calculate the background-subtracted Stokes parameters.

The Fe K α line can be modeled by a single Gaussian with $\sigma = 40 \pm 10$ eV and EW = 100 \pm 6 eV.

It presents a modest broadening: we convolve the BORUS tables with a gemooth of 28^{+15}_{-17} eV. This order of broadening is usually found in iron lines of AGN (notably in Compton-thick AGN). And the origin of the line can be attributed to the BLR or the inner torus.

Fe Ka line

disk is truncated at radius r = 25Rgthe X-ray corona acts as a "hot accretion flow" that takes over the disk, and extends down to the ISCO.

Wedge geometry

possible to the SMBH, we opted for the maximum spin value.

a=0.998?

- The spin could not be constrained during the spectral analysis. However, in order to have r_{ISCO} as closer as
- In addition, in the literature it is reported that NGC 4151 should have a a>0.94 (Keck et al. 2015)
- We note that, from the MONK simulations and cross-check, by considering a=0 the results do not change.

IXPE-XMM-NuSTAR: light curves

NGC 4151 Bin time: 3ks **10**⁶ 6×10⁵ 8×10⁵ Time (s)

Start Time 19921 4:59:55:184 Stop Time 19934 14:39:55:184

Broadband analysis

The importance of a broadband analysis:

Asses the possible contribution of the Compton reflection to the high energy end of the IXPE band.

Constrain the physical properties of the corona (kT_e, τ)

IXPE 2-8 keV

XMM-Newton 0.2-12 keV

NuSTAR 3-79 keV

