

Blazars Observations and Theory

Matteo Cerruti

PNHE DAY 2023

Université Paris Cité Astroparticule et Cosmologie (APC) Paris September 7, 2023

BLAZARS

Flat-spectrum-radio-quasars : optical/UV spectrum with broad emission lines BL Lacertae objects : featureless optical/UV spectrum

BLAZAR SPECTRAL ENERGY DISTRIBUTIONS

Spectral energy distributions (SED): two distinct radiative components

FSRQs show a peak in the IR

BL Lacs are classified into:

-IR peak: low-frequency peaked (LBLs)

- optical peak: intermediate (IBLs)
- UV/X peak: high (HBLs)

THE GAMMA RAY SKY

THE GAMMA RAY SKY

94 extragalactic sources: 5 GRBs

- 2 starburst galaxies
- 4 radio galaxies

83 blazars

BLAZARS EMISSION MODELS

Bethe-Heitler pair production

$$p + \gamma = p' + e^+ + e^-$$

Injection of secondary leptons in the emitting region, triggering synchrotron supported pair-cascades

Synchrotron emission by muons can be important

BLAZARS EMISSION MODELS

Leptonic and hadronic models can both work! Example for Mrk 421 in 2011

WHY BLAZARS?

Relativistic jets from SMBH

Jets physical parameters (Lorentz factor, magnetic field)

Dissipation region identification

AGN unified model

AGN/Galaxy feedback

Particle acceleration mechanisms

Properties of the energy distribution (index, max energy)

Leptons or hadrons

Ultra-high-energy cosmic ray accelerators

Blazars as lighthouses For fundamental physics

Gammay-ray cosmology: Extragalactic Background light, Intergalactic Magnetic Fields

Indirect dark matter Axion-like particles Quantum Gravity

Where are gamma rays produced?

Are blazars **cosmic ray** accelerators?

Are we seeing super-massive black hole **binaries**?

What can **polarization** tell us?

WHERE ARE GAMMA RAYS PRODUCED?

Origin of γ -ray emission: External-Inverse-Compton

The external field also acts as an absorber via γ - γ pair-production

The detection of γ -ray photons can be used to constrain the (relative) location of the emitting region!

WHERE ARE GAMMA RAYS PRODUCED?

MAGIC Collaboration et al. 2018

WHERE ARE GAMMA RAYS PRODUCED?

ARE BLAZARS COSMIC RAY ACCELERATORS?

Most significant association (3 σ)

of a high-energy (290 TeV) neutrino with an astrophysical source

TXS 0506+056: THE 2017 FLARE

TXS 0506+056: THE 2017 FLARE

Lepto-hadronic solutions

They can work: neutrino rates of the order of 0.1 / yr

But rather high energetic requirement : $L_{jet} \gg L_{Edd} \simeq \times 10^{46-47} \ erg/s$

TXS 0506+056: THE 2017 FLARE

Proton-photon interaction on external photon fields

WHAT HAPPENED SINCE 2017?

FLARE OF PKS 0735+178 / IC211208A

IDENTIFICATION VIA LONG-TERM QUASI-PERIODIC OSCILLATIONS

Periodicity and Quasi-Periodic-Oscillations

Ackermann et al. 2015

Zhou et al. 2018

Super-massive black-hole Binary

Helical structure of the jet

Zhou et al. 2018

Systematic search in LAT data (<u>Ren, H. et al. 2023</u>) New best candidate is S5 1044+71

Kun et al. 2023

X-ray polarization can constrain

- leptonic/hadronic models (in LSP blazars)
 - the geometry
 - the single zone model

Zhang & Böttcher, 2013

WHAT IS X-RAY POLARIZATION TELLING US?

Results from IXPE

SEE NEXT TALK!

WHY BLAZARS?

What is the particle **acceleration mechanism**? role of shocks/magnetic reconnection/shear

Are hadrons accelerated in black hole jets? blazars are cosmic rays/neutrino sources

Where are the photons produced? is the multi-wavelength SED a **single zone**?

How is the jet **launched**?

What is its structure?

How it **propagates**? role of jet/obstacle interactions

What triggers the **variability/flares**? link accretion/ejection?

What drives the different blazar SEDs/peak frequencies?

Matteo Cerruti