Millisecond pulsars and other compact objects at the Galactic center

Based on Berteaud, Calore, Clavel, Marvil et al. (in prep.)

Joanna Berteaud

astrocosmolapth.wordpress.com

Journées PNHE, Paris, September 2023

Pulsars

Pulsars

Millisecond pulsars (MSPs): P < 30 ms

Pulsars

Millisecond pulsars (MSPs): P < 30 ms

The γ-ray sky

The *Fermi* GeV excess

Murgia S. 2020. Annu. Rev. Nucl. Part. Sci. 70:455–83

The Galactic MSP population

eesa

- More than 250 MSP pulsations detected in radio
- Diffuse γ-ray emission seen by the *Fermi*-LAT

The Galactic MSP population

The Galactic MSP population

- The Galactic Center Excess and its dark matter origin
- •The free electron density
- The gravitational potential of the region
- Theories of gravity
- ...

Probes of:

- The Galactic Center Excess and its dark matter origin
- •The free electron density
- The gravitational potential of the region
- Theories of gravity

• ...

The Galactic center shows:
A large stellar density
A profusion of massive stars
→ ideal place to find compact objects

Radio

Infrared (IR)

Optical

Ultraviolet (UV)

X rays

Unresolved, by definition **← y rays**

Calore et al. (2015): current ← Radio surveys not sensitive enough

Infrared (IR)

Optical

Ultraviolet (UV)

X rays

Unresolved, by definition **← y rays**

Calore et al. (2015): current ← Radio surveys not sensitive enough

Infrared (IR)

Optica

Ultraviolet (UV)

Berteaud et al. (2021) ← X rays

Unresolved, by definition **← y** rays

X-ray detectability of the Galactic MSP population

Berteaud et al. (2021)

- ROI: 6°×6° around the Galactic center
- Detectable simulated MSP: simulated flux > Chandra sensitivity

Monte Carlo simulation available on <u>Zenodo</u>!

X-ray detectability of the Galactic MSP population

Berteaud et al. (2021)

- ROI: 6°×6° around the Galactic center
- Detectable simulated MSP: simulated flux > Chandra sensitivity
- → ~100, minor contribution from the disk
- ➔ Between 5.2 and 11.9 kpc, at 8.5 kpc on average
- ➔ Hard X-ray sources

Monte Carlo simulation available on <u>Zenodo</u>!

1. From the *Chandra* catalog:

- Non-variable
- Non-extended
- Hard sources

2. Optical constraints with Gaia:

at bulge distance
 → 3158 candidates > 95 expected

Selection of MSP candidates

1. From the *Chandra* catalog:

- Non-variable
- Non-extended
- Hard sources

2. Optical constraints with Gaia:

- at bulge distance
 - → 3158 candidates > 95 expected
- no counterpart → 2358

Selection of MSP candidates

Selection of MSP candidates 1. From the *Chandra* catalog: Non-variable Non-extended Conservative: 3158 Hard sources 10^{3} Detectable: 95 $N(E_{\chi}^{aps})$ 2. Optical constraints with Gaia: 10^{1} at bulge distance → 3158 candidates > 95 expected 10^{0} no counterpart \rightarrow 2358 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} F_x^{abs} [erg/cm²/s] 4. IR constraints with 2MASS, VVV, etc: 3. UV constraints with XMM-OM: no counterpart or no counterpart → 2298 • compact objects (CO, Lin et al. 2012): $log_{10}(F_X/F_K) > 0.5$ \rightarrow 1422, 57 CO candidates

Radio counterparts

NRAO VLA Sky Survey (NVSS): → shallow, sources above 2.5 mJy

Unpublished VLA 1.4 GHz imaging data (PI: M. Kerr): → 13 positive cross-matches, **5 interesting MSP candidates**

Candidate positions

1422 MSP candidates, including:

- 57 compact objetcts
- 5 promising radio sources
 → ongoing observations (Parkes, GBT)

Candidate positions

1422 MSP candidates, including:

- 57 compact objetcts
- 5 promising radio sources
 → ongoing observations (Parkes, GBT)

• The Galactic center is a perfect place to look for MSPs and compact objects

- The Galactic center is a perfect place to look for MSPs and compact objects
 - X-ray data **do no exclude** the pulsar origin of the Galactic Center Excess

- The Galactic center is a perfect place to look for MSPs and compact objects
 - X-ray data **do no exclude** the pulsar origin of the Galactic Center Excess
 - We found a large population of X-ray sources without multi-wavelength counterparts
- MSPs? CVs ? What else?

- The Galactic center is a perfect place to look for MSPs and compact objects
 - X-ray data **do no exclude** the pulsar origin of the Galactic Center Excess
 - We found a large population of X-ray sources without multi-wavelength counterparts
- MSPs? CVs ? What else?
- X-ray analyses and and radio searches for bulge MSPs are ongoing

- The Galactic center is a perfect place to look for MSPs and compact objects
 - X-ray data **do no exclude** the pulsar origin of the Galactic Center Excess
 - We found a large population of X-ray sources without multi-wavelength counterparts
- MSPs? CVs ? What else?
- X-ray analyses and and radio searches for bulge MSPs are ongoing

Thank you for your attention!

Back up

data with point sources masked =

diffuse emission (ICS, Bremsstrahlung, π^0) + Fermi Bubbles + isotropic emission

Dark Matter (DM) versus Millisecond Pulsars (MSP)

Spherically symmetric morphology

DM annihilation spectrum

Not enough LMXBs

...

Bulge-like morphology

Globular cluster spectrum

Accretion-induced collapse

Photon-count statistics

...

Almost 15 years of debate! Resolve the MSP population would finally settle the case.

Simulation of the Galactic MSP population

Monte Carlo simulation available on Zenodol

	Disk	<u>Zenodo</u> ! Bulge
Number density	~100 γ-ray detected MSPs Bartels et al. 2018b	
γ-ray luminosity function	Broken power-law Bartels et al. 2018b	
X-ray emission model		

Simulation of the Galactic MSP population

Monte Carlo simulation available on Zenodo!

	Disk	Bulge
Number density	~100 γ-ray detected MSPs Bartels et al. 2018b	Galactic Center Excess data Bartels et al. 2018a
γ-ray luminosity function	Broken power-law Bartels et al. 2018b	Same as in the disk
X-ray emission model	γ-to-X flux ratio correlated with the X-ray spectral index Berteaud et al. 2021	

.

I. Simulation and X-ray detectability of the Galactic bulge MSP population Berteaud et al. (2021)

Simulation of the Galactic MSP population

1

Monte Carlo simulation available on Zenodo!

	Disk	Bulge
Number density	~100 γ-ray detected MSPs Bartels et al. 2018b	Galactic Center Excess data Bartels et al. 2018a
γ-ray luminosity function	Broken power-law	Same as in the disk
	Bartels et al. 2018b	
X-ray emission model	γ-to-X flux ratio correlated with the X-ray spectral index	
		Berteaud et al. 2021

Т

X-ray detectability of the Galactic MSP population

- Detectable simulated MSP: MSP simulated flux > Chandra sensitivity
- About 100, minor contribution from the disk (Berteaud et al. 2021)

Selection of MSP candidates 1. From the Chandra catalog: • Non-variable Non-extended • Hard sources 2. Optical constraints with Gaia: • at bulge distance → 3158 candidates > 95 expected no counterpart \rightarrow 2358 4. IR constraints with 2MASS, VVV, etc: 3. UV constraints with XMM-OM: • no counterpart or no counterpart → 2298 • compact objects (CO, Lin et al. 2012): $log_{10}(F_X/F_K) > 0.5$ \rightarrow 1422, 57 CO candidates

Cumulative X-ray emission of MSP candidates

~60 CO candidates: spectrum compatible with the one of simulated MSPs

~1400 MSP candidates: contaminated by cataclysmic variables (CVs)

Radiometer equation

Radiometer equation:
→ minimum detectable flux S_{min}
→ as a function of pulsar period P

$$S_{min}(P) \alpha \sqrt{\frac{w}{T_{obs}(P-w)}}$$

Radiometer equation

635

Radiometer equation:
→ minimum detectable flux S_{min}
→ as a function of pulsar period P

$$S_{min}(P) \alpha \sqrt{\frac{w}{T_{obs}(P-w)}}$$

Radiometer equation

Radiometer equation: → minimum detectable flux S_{min} → as a function of pulsar period P

Hardest detections:

- High electron column density (DM)
- Short pulsar period
- Binary system
- Low flux

See also Calore et al. (2016)

Observations with Parkes, the GBT and the NRT

Observations with Parkes, the GBT and the NRT

Anatomy of a bright pulsar detection with PRESTO

Well-identified pulses

Seen at all frequencies

Well-defined period and period derivative

Seen during the whole observation

Well-defined dispersion measure

Anatomy of a faint pulsar candidate

Anatomy of a faint pulsar candidate

