

The incremental 4FGL-DR4 catalog

Jean Ballet DAp/AIM, CEA Saclay, France

P. Bruel, T. Burnett, B. Lott and the LAT collaboration

> Journées PNHE September 7, 2023

Principle of incremental updates

Fermi - LAT 100 MeV – 100 GeV

- Same data (P8_P305) and diffuse model (gll_iem_v07) as 4FGL (2019)
- More exposure (DR1: 8 yr, DR2: 10 yr, DR3: 12 yr, DR4: 14 yr)
- 4FGL sources are left in the model (even when TS < 25)
- Add new sources (DataRelease > 1)

4FGL

VS

Data

DR3

8 years P8R3_Source_V2 Selection PSF types, zmax depend on energy Main fit ST v11r7p0, 50 MeV – 1 TeV Method Weights, energy dispersion gll_iem_v07 Interstellar Hard limits **Diffuse parameters Extended sources** 75 Cutoff as $\exp[-aE^b]$ **Pulsars Curved spectra** TSCurv > 9 (3 σ) SED bins 7 Light curves 2-month + 1-year bins Abdollahi+ 2020, ApJS 247, 33

12 years P8R3 Source V3 Idem FT 1.4.7. 50 MeV – 1 TeV Updated weights, edisp_bins = -2Idem **Bayesian priors** 78 (3 new + 4 updated) Cutoff as $\exp\left[-d/b^2(E/E_0)^b\right]$ **TSCurv > 4** (2 σ) 8 1-year bins (not 2-month) Abdollahi+ 2022, ApJS 260, 53

Modulating the diffuse background

0.8

0.85

0.9

0.95

Problem: Diffuse parameters fit in each Region of Interest (RoI), resulting in small but sharp changes at Rol boundaries

Solution: Interpolate over diffuse parameters to make them vary smoothly over the sky. Fix isotropic and apply LP modulation to the Galactic diffuse

Interpolation: Weighted average of up to 15 Rols $w_i = (\max(D_i, R_i, 2)\sigma_i)^{-2}$ D_i : distance to Rol center R_i : Rol radius σ_i : uncertainty on parameter

LogLikelihood improves

Difficulty: Still requires first run with independent parameters. Small but significant fluctuations remain

Caveat: Do not use blindly instead of gll_iem_v07 (LP extrapolation > 10 GeV)

Journées PNHE, Sept 7 2023

Gal norm at 1 GeV

ROI-based

Interpolated

1.15

1.1

1.05

12

Adding priors to spectral curvature

Problem: LogParabola $\beta \sim 0.1$ (low curvature) in bright AGN but unrealistic large β (very peaked spectra) in faint sources

Hard cut at 1 disrupts the covariance matrix.

Solution: Enter priors on curvature parameters to stabilize the model.

Difficulty: SNRs and pulsars are more curved than AGN and binaries.

Soft priors to accommodate all:

- on LogParabola β : mean = 0.1, stdev = 0.3
- on PLEC4 ExpfactorS (~ 2β): mean=0.6, stdev=0.6

As expected, gets rid of the tail at large $\boldsymbol{\beta}$

No impact on β error (< 0.3 at TS > 25)

Including transient sources

Problem: Transient sources are **diluted over many years** and can be too faint to appear in the general catalog

They can however be significant over 1 year and affect the light curves of nearby sources

Solution: Include transients that reach TS > 25 over 1 year

Too faint to fit spectral index over 14 years. Fit over best year

They are found by dedicated means:

- 4 novae (V407 Cyg, V339 Del, V856 Sgr, YZ Ret) besides the 4 brighter ones that are detected over 14 years (V1369 Cen, V5668 Sgr, V906 Car, RS Oph) Positions fixed to the optical
- 10 monthly transients (1FLT, iFLT, ASV) besides 9 that naturally appeared in DR4 Positions taken from the dedicated search

4FGL DR4: 14 years

- Adopt much better DR4 localization for 9 DR1 and 1 DR2 sources
- Delete 14 sources in new extended sources or too faint/soft/hard
- Replace 2 extended sources (Cygnus Loop and Puppis A) with MWL templates
- Add 4 new extended sources (3 around pulsars)

546 new sources (median energy flux = 0.9 eV/cm²/s). 7194 in all

119 DR1, 82 DR2 and 106 DR3 sources end up in DR4 with 6 < TS < 25

Average **TS increase by 11%** with respect to DR3 at high latitude (17% exposure increase).

TS increase by only 7% at low latitude, limited by weights and confusion

Median log(energy flux ratio) is -2% (DR3 larger): selection bias

Spectral Shapes

Fewer curved sources due to the priors on curvature

277 pulsars (255 in DR3)

4FGL **Spectral shape** DR3 DR4 **PowerLaw** 70% 49% 53% LogParabola 26% 47% 43% PLSuperExpCutoff 4% 4% 4%

. . . .

105 of the 199 DR4 sources at TS > 25 above 100 GeV are **not known TeV sources yet**

84 are BL Lacs.

TS > 25	4FGL	DR3	DR4
Above 30 GeV	618	907	1028
Above 100 GeV		172	199

Light curves

1825 significantly variable sources in DR4

179 DR3 sources newly variable 103 not variable any longer

Fraction of variable sources (from 1-year light curves) remains around 1/4 (1/3 at high latitude).

Fractional variability did not increase significantly going from 8 to 14 years, still peaking between 50 and 90%

DR4 associations

26 new associations among former sources (23 pulsars, 3 binaries)
2 changes (glc → MSP and nova → blazar)
14 class changes among AGN (mostly to BL Lac)

236 associations among new DR4 sources:

- 83% blazars (mostly uncertain type)
- 11% unclear (several options or unknown counterpart)
- 6% Galactic

57% of new DR4 sources are unassociated

DR4 associations

Since DR3 we distinguish MSPs (recycled) and PSRs (young) pulsars

Still 17% Soft Galactic Unassociated sources

Conclusions and outlook

- Incremental 4FGL versions every 2 years
- DR4 adds about 550 more sources
- Smooth adjustment of interstellar emission model
- Prevents strongly curved spectra
- Includes bright transients
- Fraction of unassociated remains about 1/3

4FGL-DR4 is available at the FSSC

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr_catalog/

Next may be full reanalysis with new interstellar emission model

DR3

VS

DR4

Data 12 years P8R3_Source_V3 Selection PSF types, zmax depend on energy Main fit FT 1.4.7, 50 MeV – 1 TeV **Method** Weights, energy dispersion Interstellar gll_iem_v07 **Bayesian priors Diffuse parameters Extended sources** 78 **Transient sources** None Cutoff as $\exp[-d/b^2(E/E_0)^b]$ **Pulsars Curved spectra** TSCurv > 4 (2 σ) **SED** bins 8 Light curves 1-year bins

14 years P8R3_Source_V3						
ldem						
FT 2.2.0, 50 MeV – 1 TeV						
Updated weights						
LogParabola rescaling						
Idem						
82 (4 new + 2 updated)						
14						
Idem						
Idem + priors on curvature						
Idem						
Idem						

Extended sources

- 75 extended sources in 4FGL and DR2
- 6 modified, 3 new, 1 point → extended, 3 around pulsars
- **Deleted** 17 former sources inside those

	_	Source name	TS	Reference	Comment
DR3		HESS J1825-137	498	Grondin+ 2011	Correction
		HB 21	2360	Ambrogi+ 2019	One more point source
		SNR G106.3+2.7	43	Xin+ 2019	VER J2227+608
		SNR G150.3+4.5	518	Devin+ 2020	Gaussian model
		Vela X	499	Tibaldo+ 2018	Radio template
		SNR G279.0+1.1	237	Araya 2020	Cluster of DR2 sources
DR4	S	HESS J1640-465	326	Marès+ 2021	HESS template
	(Puppis A		Mayer+ 2022	eROSITA template
		Cygnus Loop		Tutone+ 2021	UV template
		SNR G51.3+0.1		Araya 2021	Cluster of DR3 sources
		3C 58		Li+ 2018	Around PSR J0205+6449
		SNR G292.2-0.5		HESS+ 2018	Around PSR J1119-6127
		CTB 80		Araya+ 2021	Around PSR J1952+3252

Journées PNHE, Sept 7 2023