

The incremental 4FGL-DR4 catalog

Jean Ballet

DAp/AIM, CEA Saclay, France

P. Bruel, T. Burnett, B. Lott and the LAT collaboration

> Journées PNHE September 7, 2023

Principle of incremental updates Fermi - LAT 100 MeV - 100 GeV

- Same data (P8_P305) and diffuse model (gll_iem_v07) as 4FGL (2019)
- More exposure (DR1: 8 yr, DR2: 10 yr, DR3: 12 yr, DR4: 14 yr)
- 4FGL sources are left in the model (even when TS < 25)
- Add new sources (DataRelease > 1)

4FGL

VS

DR3

1-year bins (not 2-month)

8 years P8R3_Source_V2	Data	12 years P8R3_Source_V3
PSF types, zmax depend o	n energy Selection	Idem
ST v11r7p0, 50 MeV – 1 Te	eV Main fit	FT 1.4.7, 50 MeV – 1 TeV
Weights, energy dispersion	Method	Updated weights, edisp_bins = -2
gll_iem_v07	Interstellar	Idem
Hard limits	Diffuse parameters	Bayesian priors
75	Extended sources	78 (3 new + 4 updated)
Cutoff as $\exp[-aE^b]$	Pulsars	Cutoff as $\exp\left[-d/b^2(E/E_0)^b\right]$
TSCurv > 9 (3 σ)	Curved spectra	TSCurv > $4(2 \sigma)$
7	SED bins	8

Light curves

2-month + 1-year bins

Modulating the diffuse background

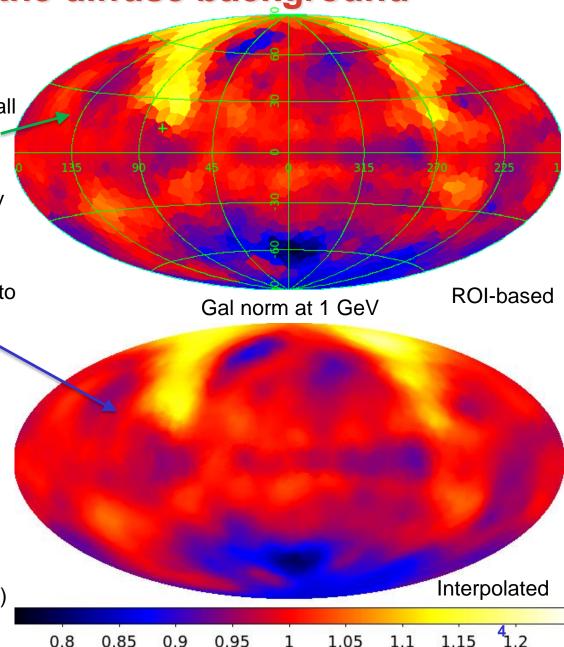
Problem: Diffuse parameters fit in each Region of Interest (RoI), resulting in small but sharp changes at RoI boundaries

Solution: Interpolate over diffuse parameters to make them vary smoothly over the sky. Fix isotropic and apply LP modulation to the Galactic diffuse

Interpolation: Weighted average of up to

15 Rols $w_i = (\max(D_i, R_i, 2)\sigma_i)^{-2}$

D_i: distance to Rol center


R: Rol radius

 σ_i : uncertainty on parameter

LogLikelihood improves

Difficulty: Still requires first run with independent parameters. Small but significant fluctuations remain

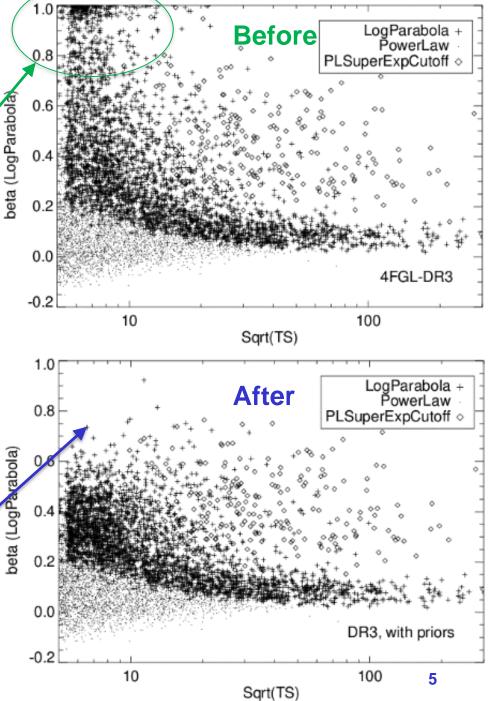
Caveat: Do not use blindly instead of gll_iem_v07 (LP extrapolation > 10 GeV)

Adding priors to spectral curvature

Problem: LogParabola $\beta \sim 0.1$ (low curvature) in bright AGN but unrealistic large β (very peaked spectra) in faint sources

Hard cut at 1 disrupts the covariance matrix.

Solution: Enter priors on curvature parameters to stabilize the model.


Difficulty: SNRs and pulsars are more curved than AGN and binaries.

Soft priors to accommodate all:

- on LogParabola β: mean = 0.1, stdev = 0.3
- on PLEC4 ExpfactorS (~ 2β): mean=0.6, stdev=0.6

As expected, gets rid of the tail at large β

No impact on β error (< 0.3 at TS > 25)

Including transient sources

Problem: Transient sources are **diluted over many years** and can be too faint to appear in the general catalog

They can however be significant over 1 year and affect the light curves of nearby sources

Solution: Include transients that reach TS > 25 over 1 year

Too faint to fit spectral index over 14 years. Fit over best year

They are found by dedicated means:

- 4 novae (V407 Cyg, V339 Del, V856 Sgr, YZ Ret) besides the 4 brighter ones that are detected over 14 years (V1369 Cen, V5668 Sgr, V906 Car, RS Oph) Positions fixed to the optical
- 10 monthly transients (1FLT, iFLT, ASV) besides 9 that naturally appeared in DR4
 Positions taken from the dedicated search

4FGL DR4: 14 years

- Adopt much better DR4 localization for 9 DR1 and 1 DR2 sources
- Delete 14 sources in new extended sources or too faint/soft/hard
- 546 new sources (median energy flux = 0.9 eV/cm²/s). 7194 in all
- Replace 2 extended sources (Cygnus Loop and Puppis A) with MWL templates
- Add 4 new extended sources (3 around pulsars)

119 DR1, 82 DR2 and 106 DR3 sources end up in DR4 with 6 < TS < 25

Average **TS** increase by 11% with respect to DR3 at high latitude (17% exposure increase).

TS increase by only 7% at low latitude, limited by weights and confusion Median log(energy flux ratio) is -2% (DR3 larger): selection bias

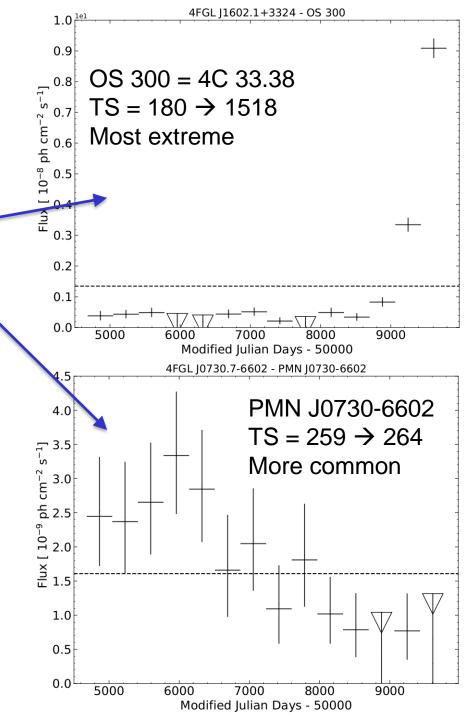
Spectral Shapes

Fewer curved sources due to the priors on curvature 277 pulsars (255 in DR3)

Spectral shape	4FGL	DR3	DR4
PowerLaw	70%	49%	53%
LogParabola	26%	47%	43%
PLSuperExpCutoff	4%	4%	4%

105 of the 199 DR4 sources at TS > 25 above 100 GeV are not known TeV sources yet 84 are BL Lacs.

TS > 25	4FGL	DR3	DR4
Above 30 GeV	618	907	1028
Above 100 GeV		172	199


Light curves

1825 significantly variable sources in DR4

179 DR3 sources newly variable103 not variable any longer

Fraction of variable sources (from 1-year light curves) remains around 1/4 (1/3 at high latitude).

Fractional variability did not increase significantly going from 8 to 14 years, still peaking between 50 and 90%

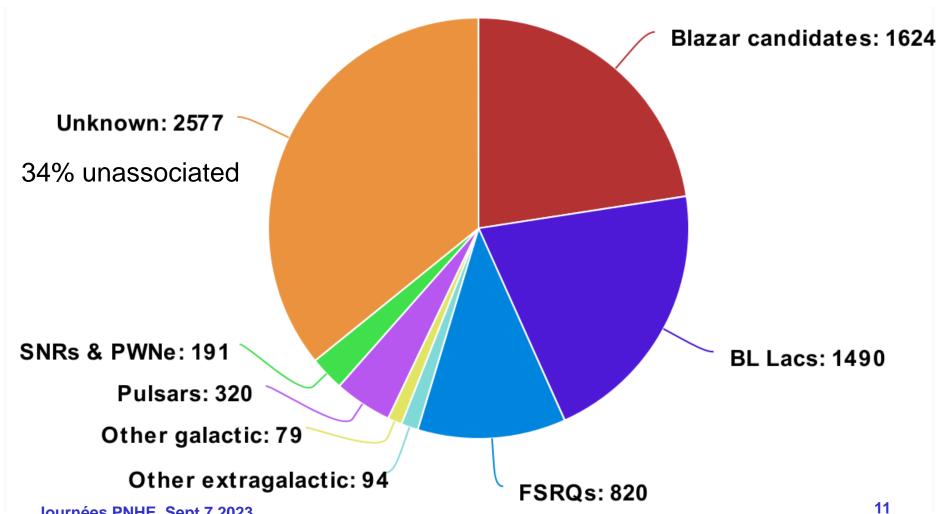
DR4 associations

26 new associations among former sources (23 pulsars, 3 binaries)

2 changes (glc → MSP and nova → blazar)

14 class changes among AGN (mostly to BL Lac)

236 associations among **new DR4 sources**:


- 83% blazars (mostly uncertain type)
- 11% unclear (several options or unknown counterpart)
- 6% Galactic

57% of new DR4 sources are unassociated

DR4 associations

Since DR3 we distinguish MSPs (recycled) and PSRs (young) pulsars Still 17% Soft Galactic Unassociated sources

Conclusions and outlook

- Incremental 4FGL versions every 2 years
- DR4 adds about 550 more sources
- Smooth adjustment of interstellar emission model
- Prevents strongly curved spectra
- Includes bright transients
- Fraction of unassociated remains about 1/3

4FGL-DR4 is available at the FSSC

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/14yr_catalog/

Next may be full reanalysis with new interstellar emission model

Methodology

Reference Catalog (4FGL DRn-1)

Merge

pointlike

Refit diffuse components

Relocalize DRn-1 sources

Source detection

Source localization

Comparison for spectra (flags)

Comparison for localization (flags)

Incremental Catalog

With flags

pyLikelihood

Official Fermi Tools and diffuse model

Original DRn-1 source localizations

Thresholding

Associations

Bayesian + Likelihood ratio

pyLikelihood

Spectral characterization

Light curves

Run with alternative diffuse model (flags)

DR3

VS

DR4

12 years P8R3_Source_V3

Data

14 years P8R3_Source_V3

PSF types, zmax depend on energy

Selection

FT 1.4.7, 50 MeV – 1 TeV

Main fit

FT 2.2.0, 50 MeV – 1 TeV

Weights, energy dispersion

Method

Updated weights

gll_iem_v07

Interstellar

LogParabola rescaling

Bayesian priors

Diffuse parameters

Idem

Idem

78

Extended sources

82 (4 new + 2 updated)

None

Transient sources

14

Cutoff as $\exp[-d/b^2(E/E_0)^b]$

Pulsars

Idem

TSCurv > 4 (2 σ)

Curved spectra

Idem + priors on curvature

8

SED bins

Idem

1-year bins

Light curves

Idem

Extended sources

- 75 extended sources in 4FGL and DR2
- 6 modified, 3 new, 1 point → extended, 3 around pulsars
- **Deleted** 17 former sources inside those

	_	Source name	TS	Reference	Comment
DR3		HESS J1825-137	498	Grondin+ 2011	Correction
		HB 21	2360	Ambrogi+ 2019	One more point source
		SNR G106.3+2.7	43	Xin+ 2019	VER J2227+608
		SNR G150.3+4.5	518	Devin+ 2020	Gaussian model
		Vela X	499	Tibaldo+ 2018	Radio template
		SNR G279.0+1.1	237	Araya 2020	Cluster of DR2 sources
	_	HESS J1640-465	326	Marès+ 2021	HESS template
DR4		Puppis A		Mayer+ 2022	eROSITA template
		Cygnus Loop		Tutone+ 2021	UV template
		SNR G51.3+0.1		Araya 2021	Cluster of DR3 sources
		3C 58		Li+ 2018	Around PSR J0205+6449
		SNR G292.2-0.5		HESS+ 2018	Around PSR J1119-6127
		CTB 80		Araya+ 2021	Around PSR J1952+3252