

La mission LISA

Antoine Petiteau (CEA/IRFU/DPhP & APC)

Journées PNHE

IAP - 6th September 2023

LISA mission

- Laser Interferometer Space Antenna
- ► 3 spacecrafts on heliocentric orbits separated by 2.5 millions km
- Goal: detect strains of 10-21 by monitoring arm length changes at the few picometre level

Gravitational wave sources emitting between 0.02mHz and 1 Hz

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

LISA

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device 3 TDI channels with 2 "~independents"

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device 3 TDI channels with 2 "~independents"

Data Analysis of GWs

Catalogs of GWs sources with their waveform

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

L1 3 TDI channels with 2 "~independents"

L3

Data Analysis of GWs

Ground Segment

• Organisation of the ground segment:

Communication: • 8h per day

Includes the coherent merging of the European and US L2 data products

European and US L2 data products

DDPC

Responsibility of France

Work Break Down structure

DDPC

Responsibility of France

Work Break Down structure

DDPC

Responsibility of France

Work Break Down structure

Timeline

- 1993: first proposal ESA/NASA
- ► 20/06/2017: LISA mission approved by ESA Science Program Committee
- End 2021: success of the ESA Mission Formulation Review
- ► Now: accelerated phase B1 with ESA Adoption 25/01/2024
- Long building phase of multiple MOSAs: 6 flight models + test models
- Building of some subsystem models already started
- ► Launch 2035
- ► 1.5 years of transfer, 4.5 years nominal mission, 6.5 years extension

- End 2021: success of th
- Long building phase of mu
- Building of some subsyste

test models

xtension

Timeline

End of phase B1 and adoption:

- I-SRR: Instrument System Requirement Review => passed
- MAR: Mission Adoption Review
- Adoption

7

• Selection of the prime (ITT)

Example of Data Release Scenario

©ESA.CREMA

Days After Insertion

Mission configuration for adoption

		Payload	
Lasers		2 per spacecraft • 2 W ouput power at end-of-life • wavelength 1064 nm • frequency stability (pre-stabilised) 300 Hz/ \sqrt{Hz}	
Optical Bench		2 per spacecraft • double-sided use• low thermal expansion (Zerodur)	
Interferometry		heterodyne interferometry $\bullet~15\text{pm}/\sqrt{\text{Hz}}$ requirement $\bullet~\text{Inter-spacecraft}$ ranging to $\sim\!\!1\text{m}$	
Gravitational Reference System		$\begin{array}{l} 46\text{mm}\times46\text{mm}\times46\text{mm}\text{ test mass made from AuPt alloy}\bullet\text{ electrostatically controlled}\bullet\text{ optical readout}\bullet\text{ Faraday cage electrostatic shield housing}\bullet\text{ electrostatic actuation in 5 DOF} \end{array}$	
Telescope		2 per spacecraft • 30 cm off-axis telescope	
		Mission	
Duration	4.5 years s	cience orbit • ~6.25 years including transfer and commissioning	
Orbits	Three dra inclinatior	Three drag-free satellites in heliocentric orbits \bullet semimajor axis ~1 AU \bullet eccentricity $e \approx 0.0096 \bullet$ inclination $i \approx 0.96^{\circ}$	
Constellation	Equilatera the eclipti <20 m/s	I triangle • 2.5×10^6 km armlength • trailing Earth by ~ 20° • inclined by 60° with respect to c • armlength variation <1 % • angular variation ±0.8° • relative velocity between spacecraft	
		Data Analysis	
Noise Reduc- tions	Laser nois Spacecraf suppressic	e suppression with time-delay interferometry • Ranging processing and delay estimation • jitter suppression and reduction to 3 lasers • Tilt-to-length effect correction • Clock noise n • Clock synchronisation	
	Level 0	Primary science telemetry, decommutated, time-stamped, unit-level calibrations applied	
Data Levels	Level 1	Time-Delay Interferometry (TDI) variables (GW strain)	
Data Levels	Level 2	Output from a global fit pipeline, posterior pdfs for all sources.	
	Level 3	Catalogue of GW source candidates (detection confidence, estimated astrophys. parameters)	

- ► Bursts: cosmic strings, ...
- Unknown?

LISAU

Defined in the Science Requirements Doc.:

- SO1: Study the formation and evolution of compact binary stars in the Milky Way Galaxy.
 Astrophysi
- SO2: Trace the origin, growth and merger history of massive black holes across cosmic ages.
- SO3: Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs.
- ► **SO4:** Understand the astrophysics of stellar origin black holes.
- ► SO5: Explore the fundamental nature of gravity and black holes.
- ► **SO6:** Probe the rate of expansion of the Universe with standard sirens.
- SO7: Understand stochastic GW backgrounds and their implications for the early Universe and TeV-scale particle physics.
- SO8: Search for GW bursts and unforeseen sources.

Fundamenta physics

Binaries observed by LISA

12

S 🔨

CONSOR

LISA 🕽

Binaries observed by LISA

LISA - A. Petiteau - Journées PNHE - IAP - 6th september 2023

LISA

- Formation and evolution pathways of dark compact binary stars in the Milky Way and in neighbouring galaxies;
- The Milky Way mass distribution;
- The interplay between gravitational waves and tidal dissipation.
- Link to:
 - Multimessanger
 - Population modelling
 - SN1a

- SO2 : Trace the origin, growth and merger history of massive black holes across cosmic ages:
 - Discover seed black holes at cosmic dawn;
 - Study the growth mechanism and merger history of massive black holes from the epoch of the earliest quasars;
 - Identify the electromagnetic counterparts of massive black hole binary coalescences.

CONSORTIUM

 SO3: Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs:

- Study the properties and immediate environment of Milky Way-like MBHs using EMRIs;
- Study the IMBH population using IMRI.
- Link to Tidal
 Disruption Event

- SO4 : Understand the astrophysics of stellar origin black holes :
 - Study the statistical properties of sBHs far from merger;
 - Detecting high mass sBHBs and probing their environment;
 - Enabling multiband and multimessenger observations at the time of coalescence.

LISA / HE

Multi-messenger: observation of the same event (alerts, live update)

- Interacting galactic binaries,
- Massive BH Binaries,
- EMRIs?
- IMRIs?
- Tidal Disruption Events?

Populations:

- Galactic sources (i.e. X-ray binaries, cataclismic variables, ...),
- Massive BHs,
- Other sources

LISA and High Energy observatories observe same category of objects.

More in LISA astrophysics white paper: arXiv:2203.06016 / LRR, 26-1

LISAFrance

- Responsibilities:
 - DDPC
 - AIVT Inteferometric Detection System + Optical Test System
 - Performances management
- LISAFrance collaboration:
 - 219 members / 153 full members
 - 15 laboratories / 6 institutes
 - Telecon every 2 weeks / LISAFrance day every year (next: 20th Nov)
 - PIs: Antoine Petiteau & Astrid Lamberts
- ► SNO LISA accepted in 2023
- How to join:
 - Possible to join the current Consortium (just note the reorganisation in 1.5y)
 - In future:
 - French contribution: DDPC and/or instrument
 - ESA LISA Science Team, its working group and Science Topical Panel
 - Consortium

LISA - A. Petiteau - Jour

Conclusion

- LISA is a large space mission to observe Universe with gravitational wave;
- Planning: adoption in January 2024, launch 2035
- ESA led mission with contributions from NASA and member states in particular France : Distributed Data Processing Center, AIVT Interferometric Detection System, performances
- Huge science case with many links to High Energy astronomy:
 - Multi-messenger (Interacting galactic binaries, MBH Binaries, ...)
 - Populations (galactic sources, MBHs, ...)
- LISAFrance:
 - SNO LISA
 - Next "journée LISAFrance": 20th November 2023 at CNES

Thank you

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

22

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

22

What kind of data will we measure?

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

22

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

- Fractional frequency deviations (relative doppler shits) from 27 interferometers
- Times series sampled at 4 Hz, observed over 4+ years with 82% duty cycle
- Dominated by laser noise
- After pre-processing, obtain 3 time-delay interferometry (TDI) data streams (X, Y, Z)

- SO5 : Explore the fundamental nature of gravity and black holes :
 - Use ringdown characteristics observed in MBHB coalescences to test whether the post-merger objects are the MBHs predicted by GR;
 - Use EMRIs to explore the multipolar structure of MBHs and search for the presence of new light fields;
 - Test the presence of beyond-GR emission channels;
 - Test the propagation properties of GW.

- SO6 : Probe the rate of expansion of the Universe :
 - Estimation of cosmological parameters via the observation of standard sirens: observations of binaries :
 - GWs ➡ "luminosity distance", D
 - Electromagnetic observations ➡ redshift, z

GW ⊏> D

Photons 🖒 Z

rightarrow constraint on the relation D(z) depending on the decometry of the Univers rightarrow measurement of cosmological parameters rightarrow

S. Noble - NASA

- SO6 : Probe the rate of expansion of the Universe :
 - Cosmology from bright sirens: massive black hole binaries;
 - Cosmology from dark sirens: extreme mass ratio inspirals and stellar-origin black hole binaries;
 - Cosmology at all redshift: combining local and high-redshift LISA standard sirens measurements.

- SO7: Understand stochastic GW backgrounds and their implications for the early Universe and TeV-scale particle physics :
 - Characterise the astrophysical SGWB;
 - Measure, or set upper limits on, the spectral shape of the cosmological SGWB;
 - Characterise the large-scale anisotropy of the SGWB.

► SO8: Search for GW bursts and unforeseen sources :

- Search for cusps and kinks of cosmic strings;
- Search for unmodelled sources.