Studly of Techo SNR

 aspmanetries with
three dimensional velocity vector field

Leïla Godinaud - PhD student CEA Saclay/AIM
Supervisor : Fabio Acero leila.godinaudecea.fr

Tycho's SNR

- Explosion in 1572 observed by Tycho Brahe
- Supernova thermonuclear (type la)
- Distance : 3.5 kpc
- Size : 12 arcmin
- Observation Chandra space telescope : more than 950 ks (~330 h)

Composite image : synchrotron emission (blue), iron emission (red), silicon and intermediate elements emission (yellow).

Why some new tools about
 the 3D ejectas dynamics?

Plot with data from Williams et al, 2017

Origin of asymmetries ?

- Innate : anisotropy during the explosion
- Acquired : inhomogeneties in the CSM

Current methodology

- Plane of sky : two 1D profiles to measure proper motion (Vxy) between two years - Line of sight : measure of Doppler effect with spectrum fitting, deduce Vz

Limits

- Use only spectral OR spatial informations
- Limited spatial coverage
- Not enough velocity vectors to do statistics

3

The GMCA tool

Inputs

Cube $=\sum_{i}$ Spectrum $_{i}$ Image $_{i}$ General Morphological Components Analysis (GMCA) : Blind source separation in a linear combination of spectra and images Bobin et al, 2015 Picquenot et al, 2021 SNR, 2009 Si line (1.6-2.1 keV) Chandra telescope

Method to obtain Ec map

1) We use GMCA's definition to "reconstruct" the spetrum in each pixel (i,j)

Spectrum $_{i, j}=\sum_{\text {Component } k}$ Image $_{G M C A, k, i, j}$ Spectrum $_{G M C A, k}$
2) We fit the GMCA spectra with a gaussian. We obtain an analytical expression of these spectra and so, of the spectrum in each pixel.

3) Silicon line peak is spectrum derivative in each pixel
4) And an analytical proxi of the solution is:
fit parameters from GMCA's spectrum red and blueshifted

Line of sight velocity from the energy centroid

Methodology

Combine red/blue GMCA images weighted by GMCA spectral parameters

Results

- N/S clear asymmetry
- Total coverage of the SNR
- Brightness independant

Limits

- Integrated values on the line of sight
- No uncertainties 7 obtain the velocity map

Cross checking our method

Comparing the velocity from previous studies with our values at same position.

Very good agreement between our global method and other local studies.

9

10
Observation 2003

Velocity in the plane of sky: a new method

Tracking 2D features between epochs

- Inspired from optical flow
- Adapted to the Poisson statistic
- 3D interpolation for sub-pixel precision
- Complete uncertainties ellipse
- Algorithm transparency

Shift vector and uncertainties

Vector field Vxy in plane of sky

Results

- Thousands of vector (1722), allowing a statistical study
- Full ellipse uncertainty (1 sigma, not shown here)
- local behaviour, no large scale regularisation

Large scale asymmetry

- Known velocity asymmetry of the forward shock explained by a density gradient
- For the ejecta : change of behaviour East/West, with the expected linear profile for the low-density side

Fast iron and silicon knots

- Small scale deviations from the expected linear profile
- Fast dense "bullets" of iron and silicon produced during the explosion

Probe the interactions with

 the environment- Slow down of the ejecta near the edge of the SNR
- Known overdensity in radio (Zhou et al, 2016) in this zone

> A proof of an interaction with a cloud?

Toward a 3D reconstruction

- Localize the vector in the line of sight
- For now more hypothesis are needed

3D representations

Thanks for your attention

Illustrations

- Gavin Leroy
- Julie Borgese

Data used in this presentation

- Chandra telescope archive
- Williams et al, 2017
- Salto et al, 2017
-Yamaguchi et al, 2018

> Phew its over...

But there are some backups!

GMCA check with simulations

With the data (x, y, z, E) from S. Orlando simulation of CasA, we compare :

GMCA results with the simulated cube ($\mathrm{x}, \mathrm{y}, \mathrm{E}$) centered on Fe line
simu red
simu blue

The two images of the half shells with position $z>0$ or z<0 (Fe line)

- Total spectrum
- GMCA ouput
- spectrum from half shell

How we choose the energy of reference for the Si line?

- Background map : the theoritical energy centroid of the Si line at rest according kT and tau
- On this map, we put (kT , tau) measures from spectral local extraction and fitting
- We take the mean corresponding energy at rest as our reference : Eref $=1.854 \mathrm{keV}$.
- Small impact from variation of energy of reference around our value on the velocities

3D reconstruction

$$
\begin{aligned}
v_{z} & =v_{t o t} \cos \theta_{V} \\
v_{x y} & =\sqrt{v_{x}^{2}+v_{y}^{2}}=v_{t o t} \sin \theta_{V} \\
r_{z} & =r_{t o t} \cos \theta_{P}
\end{aligned}
$$

$$
r_{x y}=\sqrt{r_{x}^{2}+r_{y}^{2}}=r_{t o t} \sin \theta_{P}
$$

If we suppose that radius and velocity vectors are colinear $\theta_{V}=\theta_{P}$ we find:

$$
r_{z}=\frac{V_{z}}{V_{x y}} r_{x y}
$$

