

Observational constraints on transient accelerators of ultra-high energy cosmic rays

Antonio Condorelli, Jonathan Biteau & Olivier Deligny – Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay September 6, 2023

- UHECR spectrum → constraints on the emissivity of the candidate sources.
- Propagation effects
 → UHECRs are coming from nearby Universe.

Motivation

- UHECR spectrum → constraints on the emissivity of the candidate sources.
- Propagation effects
 → UHECRs are coming from nearby Universe.
- Correlation with a starburst catalogue contributing only to 10% of the flux^{*a*}. What about the remaining 90%?

2

Studying the plausible UHECR sources in the nearby Universe in a transient scenario.

^{*a*}L. Caccianiga for the Auger-TA working group, ICRC2023

Combined fit using a complete catalogue of the nearby Universe

- Catalogue of 400,000 galaxies ¹ in the nearby Universe (≤ 350 Mpc).
- Assuming that UHECR production rate follows a tracer (SFRD or M_{\star} density).

¹J. Biteau (2021) Astrophys. J. Suppl. 256

- Discrete: Compute the flux for each galaxy from the catalogue proportional to their tracer.
- Continuous: Compute the flux from z = 0.08 to z = 2.5 (isotropic background).
- Able to reproduce spectrum and composition + arrival direction map.

Contribution for each galaxy in a transient scenario

• Each galaxy contributes with a number of bursts *N* given by:

 $N = \Delta \tau \cdot \mathbf{k} \cdot \mathbf{s}$

With

- *s* is the tracer.
- Δτ is the time spread induced by magnetic fields.
- *k* is a parameter such as
 k · *s* is the the burst rate.
- N is randomized $\rightarrow 100$ realizations \rightarrow median map.

Magnetic field and time spread

- Magnetic fields contribute not only in deflection but also on time delays.
- The time spread is computed assuming small-angle scattering:

$$\frac{\Delta \tau}{4.4 \times 10^3 \text{ yr}} = \left(\frac{B}{10 \text{ nG}}\right)^2 \left(\frac{R}{10 \text{ EV}}\right)^{-1} \left(\frac{d}{1 \text{ Mpc}}\right)^2 \left(\frac{\lambda_B}{10 \text{ kpc}}\right)$$
(1)

Propagation in galaxy clusters

- Galaxy clusters \longrightarrow how do they affect UHECR propagation? In ²:
 - Modelling on the environment under the assumption of self-similarity.
 - Propagation in the environment.
 - Universal parametrization of the transparency.
 - Take-home message: galaxy clusters are very opaque environment for UHECR nuclei → effect to be taken into account!

²A. Condorelli, J. Biteau and R. Adam., submitted to ApJ

Exploring the plausible range of k

Scan over a range of k to reproduce the observed sky map.

- low value of k (3 · 10⁻¹⁷ M_{\odot}⁻¹ yr⁻¹): filter the nearby sources.
- Sky map dominated by sources at distances ≥ 10 Mpc.

- high value of $k (1 \cdot 10^{-13} \text{ M}_{\odot}^{-1} \text{ yr}^{-1})$: contribution from nearby sources.
- Sky map dominated by the Andromeda Galaxy (not seen in data).

Best k

- The best map is obtained for a value of $k = 1 \cdot 10^{-15} \text{ M}_{\odot}^{-1} \text{ yr}^{-1}$.
- A range of *k* is plausible for matching the observations.

Best k

 The experimental skymaps constrains the burst rate.

- The experimental skymaps constrains the burst rate.
- Spectrum and composition constrain the energetic budget.

- The experimental skymaps constrains the burst rate.
- Spectrum and composition constrain the energetic budget.
- LL-IGRB and TDE are suitable candidate UHECR sources in a transient scenario.

Thanks for your attention!

- The experimental skymaps constrains the burst rate.
- Spectrum and composition constrain the energetic budget.
- LL-IGRB and TDE are suitable candidate UHECR sources in a transient scenario.

BACK-UP

Including coherent deflection

- GMF model: JF12;
- Force-brutal backtracking accounting for (de)magnification effects (agreeing with Farrar-Sutherland JCAP 05 (2019) 004)
- Fraction of He from < 5 Mpc sources such as 3% of He in total (up to 10%, depending on hadronic interaction model, in the latest Auger report at this conference)

Including coherent deflection

- GMF model: JF12;
- Force-brutal backtracking accounting for (de)magnification effects (agreeing with Farrar-Sutherland JCAP 05 (2019) 004)
- No Helium.

Local sheet

Magnetic fields and angular spread

$$\frac{\Delta\theta}{3.4^{\circ}} = \left(\frac{B}{10 \text{ nG}}\right) \left(\frac{R}{10 \text{ EV}}\right) \left(\frac{d}{1 \text{ Mpc}}\right)^{1/2}$$
$$\left(\frac{\lambda_B}{10 \text{ kpc}}\right)^{1/2}$$

Chosen values of the magnetic fields

- Galactic magnetic field: 1 μ G (JF12), $\lambda_c = 100$ pc (JF12), $L_{max} = 10$ kpc (size fo the galaxy).
- Local Sheet magnetic field: largely under-constrained. From MHD simulations (Donnert et al. 2018) $B \simeq 2 - 10$ nG, $\lambda_c = 10$ kpc (Donnert et al. 2018), $L_{max} = 1$ Mpc (radius of the Local Group).

Chosen values of the magnetic fields

- Extra-galactic magnetic field: Upper limits on extragalactic magnetic fields are set to tens of pG, for magnetic fields of primordial origin that would affect CMB anisotropies (Jedamzik & Saveliev 2019).
- Lower limits at the fG level have also been derived from the non-observation in the GeV range of gamma-ray cascades from TeV blazars (Neronov & Vovk 2010; Tavecchio et al. 2010; Ackermann et al. 2018)
- $\lambda_c = 1$ Mpc (Bray and Scaife, 2018)).

