Probing the dense matter
Inside neutron stars
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The equation of state P(p) of the unknown interior
of neutron stars can be determined with
measurements of Mns - Rns with a few % precision.

P(p) 2 M(R)

Unknown core
with multiple
hypotheses

Standard Hyperons Quarks/Gluons Kaon




Strong gravity permits seeing beyond the
hemisphere of the neutron star, leaving imprints
on the lightcurves of millisecond pulsars.

Strong gravity == e
Weak gravity o | »

NICER was launched
for this science goal.
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The NICER Science Team published
the results for two pulsars.
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The two independent

S \ analyses for each
\ target are consistent

+ PSR ]0030+0451
> Riley et al. 2019
> Miller et al. 2019

+ PSR ]0740+6620
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See also additional analyses in
Salmi et al. 2022, 2023
Vinciguerra et al. 2023a, 2023b

See also a third independent re-analysis of
PSR J0030+0451 by Afle et al. 2023
finding consistent results
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PSR ]1614-2230
Wolff et al. 2021 12
Known high mass:

M = 1.908+0.016 Mo
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What did we learn from the analysis of
NICER observations of millisecond pulsars?

Modelling of the

background(s) matters!
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What did we learn from the analysis of
NICER observations of millisecond pulsars?

Modelling of the The geometry was not as simple
background(s) matters! as initially anticipated!
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Determining the
equation of state
of dense matter
will require the
hext generation
of observatories!

Mns (Mo)




Determining the
equation of state
of dense matter
will require the
hext generation
of observatories!
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Future prospects for pulse profile modelling
with new-Athena are quite promising.

Simulations of PSR J0740+6620 with Pspin = 2.88 msec and d=1.2 kpc

R~11.5 km, M=2.08 M. with 2 circular hot spots
Simulation of 500 ksec observations
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Inference on the radius of
PSR J0740+6620 from 500 ks
with New-Athena WFI

+ Radius 1-sigma uncertainties
+ NICER 1600 ksec: ~10%

+J]ATHENA 500 ksec: ~3% average (+0.3 km)

+ Occasionally, a random noise realisation gives a
less constrained radius

+ The inferred Ny can vary between each random

noise realisation, but overall better constrained
than with NICER
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For faint MSPs, the choice of atmosphere
may affect the radius measured.

NICER data of PSR J0740+6620

Salmi et al. 2023 (sub.) Solutions to solve this degeneracy

—— Helium + Measure Ny independently
o + Use New-ATHENA

ATHENA Simulations of Hydrogen
atmosphere data set, and run the inference

with Helium atmosphere model

+ For 500 ks: In(Bayes Factor) ~ 100-150




The time resolution of WFI might
be limiting, so let’s look at X-IFU

+ Time resolution is an important requirement for Spectro-temporal analyses
of millisecond pulsars, especially with Pspin ~ 2 msec.

+ Time resolution: 10 usec (X-IFU) versus ~100 upsec (WFI)

Simulations of PSR J0740+6620 in 200 ksec with (old) X-IFU
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X-1FU in 200 ks for

+ Radius measurements with
~4-5% uncertainties

+ The inferred Ny is inconsistent
with the input value

To be
investigated in
more details

and

to re-do with
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Conclusions

+ NICER has demonstrated of the feasibility of measuring the radii of
millisecond pulsars, but revealed new observational and modelling challenges

+ NewAthena has the potential to bring us much closer to understanding the
interior of neutron stars, with its numerous advantages:

+ High effective area
+ Very low (and known!) background
+ Good timing resolution

+ Unmatched capabilities compared to current observatories:

+ XMM-Newton in timing mode will not achieve the same quality of
measurements, even in several Msec of observations)

+ Open questions:

+ How does New-Athena compare to other proposed X-ray missions ?
+ Can we harness the high spectral resolution of XIFU?
+ Can New-Athena distinguish between different surface spot patterns ?
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The surface thermal emission is modelled with a
NS atmosphere, not a black body.

Zavlin et al. (1996)
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In the following, we used Hydrogen
atmosphere models



The high background in the
NICER data needs to be modelled.

+ 3C50: Empirical background estimates (from blank fields)

+ SCORPEON: Analytical background
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For the pulsar PSR J0030+0451, the simplest
model shows clear residuals between the
model and the data.

Data PSR J0030+0451

2 circular spots

Riley et al. (2019)



Energy

The preferred model consist in a small

circular spot and an elongated crescent.
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