First analysis of LSST Supernovae Ia data with a focus on measuring the growth rate of structures

> Damiano Rosselli 1st year PhD, CPPM Supervisor: Dominique Fouchez Co-Supervisor: Stephane Arnouts

Cosmological Model

Observing the Universe We observe the redshift of the objects

redshift + Cosmological Model: Convert redshift into distances

Cosmological Model

Standard Distance Indicators: Distance measurements, then Constrains on cosmological model

Data show accelerated expansion:

- **GR + Dark Energy Component** (what is dark energy?)
- General Relativity doesn't work on cosmological scale (alternative gravity theories?)

Supernovae Ia are Standard Candels, We 'know' their intrinsic luminosity We use them to measure the luminosity distance

Cosmology with Supernovae

Cosmology with Supernovae

• anchor (TRGB,Cepheids) then H₀

Vera Rubin Observatory & LSST

From lsst.org

Vera Rubin Observatory, Chile Start: end of 2024

LSST: about 18,000 deg2 of the southern sky with 6 filters r<23.5 wide field r<24.5 deep fields z>0.1

About 200000 Snela in the next 10 years (up today about 5000 Snela)

Impossible to have a complete spectroscopic follow-up of Sne

(no spectroscopic typing, no spectroscopic redshift for all the objects)

Thesis Project

- Preparation for LSST data analysis:
- Phototyping
- Study and correct the bias on $f \sigma_8$ in contaminated sample

SNe Lightcurves & Phototyping

SN at redshift z : 0.05105 and peak at time t_0 : 58030.00 MJD

Phototyping:

Determine the object type through the features of its lightcurve (usually done with machine-learning)

Simulation Pipeline

Simulation Pipeline

Preparing LSST Data Analysis

- Simulation of realistic surveys
- Confont simulation with real data up

North sky coverage in 3 filters Z<0.1 Automated spectroscopic follow-up

DR2 public soon: About 3000 typed SNeIa with spectroscopic redshifts

Preparing LSST Data Analysis

- Test the phototyping algorithm trained on both data and simulations
- Study the impact of the bias on $f\sigma_8$ measurement when only photometric data available (also redshift)
- Correct the Bias
- Develop and Test the complete pipiline for LSST data analysis: focus on measure the growth rate of structures

Thanks for your attention