

Direct search for Dark Matter with the DarkSide-20k experiment Marie van Uffelen - CPPM, LAM - IPhU days 2023

PhD supervisors: Emmanuel Nezri (LAM), Fabrice Hubaut (CPPM)

The experiment I work on: DarkSide-20k

• Strong discovery potential in the

- Next Argon experiment: DarkSide-20k

 - Argon double phase TPC

Declaration of my PhD thesis purpose and first results

Last year's presentation (link)

Dark Matter Direct Detection (DMDD)

DM in the form of WIMPs (Weakly Interacting Massive Particles)

Dark Matter Direct Detection (DMDD)

DM in the form of WIMPs (Weakly Interacting Massive Particles)

Phenomenological part of the thesis

- The exclusion limit of an experiment allows to:
 - Compare experiment between themselves and assess the competitiveness of each of them in different WIMP mass regions
 - Claim for the rejection of a phase space region in (m_{γ}, σ) after null-result

Assess the effects of astrophysical uncertainties on DS20k exclusion limit

Need a ground model to describe the WIMP galactic halo influencing the rate of events one has in its detector

Every DMDD uses the so-called **Standard Halo** Model (SHM), a very handy halo model derived from very simple assumptions (non-collisionnal, isotropic and isothermal halo)

Need a realistic model relying on reasonable assumptions in order not to incorrectly accept or reject phase space

To do so, one needs to rely on trustworthy cosmological simulations and good estimates of the astrophysical parameters of interest $(v_0, v_c, v_{esc}, \rho_0)$

Phenomenological part of the thesis

- The exclusion limit of an experiment allows to:
 - Compare experiment between themselves and assess the competitiveness of each of them in different WIMP mass regions
 - Claim for the rejection of a phase space region in (m_{γ}, σ) after null-result

Assess the effects of astrophysical uncertainties on DS20k exclusion limit

Need a ground model to describe the WIMP galactic halo influencing the rate of events one has in its detector

Every DMDD uses the so-called **Standard Halo** Model (SHM), a very handy halo model derived from very simple assumptions (non-collisionnal, isotropic and isothermal halo)

Need a realistic model relying on reasonable assumptions in order not to incorrectly accept or reject phase space

To do so, one needs to rely on trustworthy cosmological simulations and good estimates of the astrophysical parameters of interest

 $(v_0, v_c, v_{esc}, \rho_0)$

Development of		0.0040 -		
different methods to	0.0035 -			
integrate these f(v)	0.0030 -			
	I	0.0025 -		
Directly take the 22		0.0020 -		
input input		0.0015 -		
	<u>. up</u>	0.0010 -		
		0.0005 -		
		0.0000		

0.0030

0.0025

0.0020

€ 0.0015

0.0010

0.0005

0.0000

Development of	0.0040 -
different methods to	0.0035 -
integrate these f(v)	0.0030 -
	0.0025 -
Directly take the simulation result as	€ 0.0020 -
input See more in back up	0.0015 -
	0.0010 -
	0.0005 -

Development of different methods to integrate these f(v)

Directly take the simulation result as input

 <u>See more in back up</u>

Fit the simulation result with known distributions

 <u>See more in back up</u>

Development of different methods to integrate these f(v)

Directly take the simulation result as input

10-3

(E¢

ho(r) (M_\odot/kpc

Fit the simulation result with known distributions

😻 <u>See more in back up</u>

Fit the mass distribution and perform Eddington Inversion

<u>See more in back up</u>

Eddington procedure

<u>See more in back up</u>

Future: perform rates and exclusion limits computations

Development of different methods to integrate these f(v)

Directly take the simulation result as input

 <u>See more in back up</u>

Fit the simulation result with known distributions See more in back up

Fit the mass distribution and perform Eddington Inversion

 <u>See more in back up</u> Global result

SHM with a bandwidth coming from different input of f(v)10-44 **10**⁻⁴⁵ σ_{S/} [cm²] 10⁻⁴⁶ ⊦ **10**⁻⁴⁷ **10**⁻⁴⁸ 10^{3} 10² M_{γ} [GeV/c²]

12

Take better estimates for the astrophysical parameters of interest

Play on v_{esc} , v_0 , v_c , ρ_0 in the rate of events, hint from galaxy surveys

Litterature survey of parameters estimate

2011 - 2022 estimates of astrophysical parameters computed from galactic surveys data analysis $v_0 \in [178, 252] \text{ km/s}$ $v_c \in [178, 252] \text{ km/s}$ <u>See more in back up</u> $v_{esc} \in [432, 693] \text{ km/s}$ $\rho_0 \in [0.13, 0.44] \text{ GeV/cm}^3$

Blue line: reference (published) exclusion limit computed with SHM and $v_{esc} = 544$ km/s, $v_c = 220$ km/s, $v_0 = 220$ km/s, $\rho_0 = 0.3$ GeV/cm³ **Dark red band**: band coming from ρ_0 variation in its uncertainty interval: $\rho_0 \in [0.13, 0.44]$ GeV/cm³ & $v_{esc} = 544$ km/s, $v_c = 220$ km/s, $v_0 = 220$ km/s Light red band: band coming from v_{esc} , v_c and v_0 variation in their respective uncertainty interval $e.g: v_0 \in [178,252]$ km/s & $v_{esc} = 544$ km/s, $v_c = 220 \text{ km/s}, \rho_0 = 0.3 \text{GeV/cm}^3$

Independent variation of parameters

Take better estimates for the astrophysical parameters of interest

Litterature survey of parameters estimate

2011 - 2023 estimates of astrophysical parameters computed from galactic surveys data analysis $v_0 \in [178, 252] \text{ km/s}$ $v_c \in [178, 252] \text{ km/s}$ 둘 <u>See more in back up</u> $v_{esc} \in [432, 693] \text{ km/s}$ $\rho_0 \in [0.13, 0.44] \text{ GeV/cm}^3$

Independent variation of parameters

Play on v_{esc} , v_0 , v_c , ρ_0 in the rate of events, hint from galaxy surveys

However, these four astrophysical parameters depend on one another. Future (and last) commitment on the phenomenological part of the thesis: collaborate with J. Lavalle (LUPM, Montpellier) to obtain consistent sets of parameters to take as input in the exclusion band computation

Declaration of my PhD thesis purpose and first results

Last year's presentation (link)

- Tests at room
- Strain deformation vs

6 oral reports to the collaboration (including one in collaboration *meeting*)

Use AI to help signal reconstruction and optimize signal/background rejection

Back up

The Standard Halo Model (SHM) -1/2

- The SHM is a model derived from circular velocity measurements in galaxies (20th century):
 - Need to fit the velocity measurements adding a dark matter (i.e. mass component)
 - Data = v_c becomes constant
 - Isotropic gravitational potential :

$$a = \frac{v_c^2}{r} = \frac{\mathscr{G}M(r)}{r^2} \implies v_c = \sqrt{\frac{\mathscr{G}M(r)}{r}} \sim \text{cst} \implies$$

 $M(r) \sim r$

•
$$M(r) = \int_0^r \rho(r) d^3 r = \int_0^r \rho(r) r^2 dr \sim r => \rho(r) \sim \frac{1}{r^2}$$

Ground model to compute DMDD exclusion limits

- Assuming a model describing isotropic, spherically symmetric collisionless gas of DM particles
- Simple solution = describe the gas with Maxwell-Boltzmann distribution
 - Isothermal gas

< = >

The Standard Halo Model (SHM) - 2/2 Ground model to compute DMDD exclusion limits

- In DMDD, one needs to estimate the number of NR events in the detection volume
- To compute it, one needs to estimate the velocity of the WIMP in the Earth frame
- Velocity composition:

• $\overrightarrow{v_{\chi/\oplus}}(t) = \overrightarrow{v_{\chi/gal}} - \overrightarrow{v_{\oplus}}(t) = \overrightarrow{v_{\chi/gal}} - \overrightarrow{v_{\oplus/\odot}}(t) - \overrightarrow{v_c} - \overrightarrow{v_{pec}}$

- Thus for DMDD, one needs to estimate the values of astrophysical parameters of interest to describe the halo AND to perform the change of frame
- The chosen values are the ones better-estimated in the 2010's:
 - $v_{esc} = 544 \text{ km/s}$
 - $v_c = v_0 = 220 \text{ km/s}$
 - $\rho_0 = 0.3 \, {\rm GeV/cm^3}$

Gives in the end

Take directly cosmological simulation data as input for $f(\vec{v})$

Cosmological simulations

Model gravitational interactions across

Result

Data from Arturo Nuñez thesis

SHM vs Halo B

Development of	0.0040
different methods to	0.0035
integrate these f(v)	0.0030
	0.0025
Directly take the simulation result as	<u>)</u> 0.0020
input	0.0015

<u>See more in back up</u>

0.0010

0.0005

0.0000

21

Description of a Tsallis distribution

(a) Halo B

Description of a generalized Maxwellian distribution

Development of different methods to integrate these f(v)

Directly take the simulation result as input

<u> See more in back up</u>

Fit the simulation result with known distributions

See more in back up

Take better estimates for the astrophysical parameters of interest

Play on v_{esc} , v_0 , v_c , ρ_0 in the rate of events, hint from galaxy surveys

Litterature survey of parameters estimate

2011 - 2023 estimates of astrophysical parameters computed from galactic surveys data analysis $v_0 \in [178, 252] \text{ km/s}$ $v_c \in [178, 252] \text{ km/s}$ <u>See more in back up</u> $v_{esc} \in [432, 693] \text{ km/s}$ $\rho_0 \in [0.13, 0.44] \text{ GeV/cm}^3$

Independent variation of parameters

Take better estimates for the astrophysical parameters of interest

Play on v_{esc} , v_0 , v_c , ρ_0 in the rate of events, hint from galaxy surveys

Litterature survey of parameters estimate

2011 - 2023 estimates of astrophysical parameters computed from galactic surveys data analysis $v_0 \in [178,252]$ km/s $v_c \in [178,252]$ km/s $v_{esc} \in [432,693]$ km/s $\rho_0 \in [0.13,0.44]$ GeV/cm³

Independent variation of parameters

Eddington inversion procedure

Results from Arturo Nuñez thesis

Solve collisionless Boltzmann equations $\overrightarrow{v} \cdot \frac{\partial f}{\partial \overrightarrow{r}} - \frac{\partial \Phi}{\partial \overrightarrow{r}} \frac{\partial f}{\partial \overrightarrow{v}} = 0$

> And Poisson equations $\Delta \Phi = 4\pi \rho(\vec{r})$

+ Jeans' theorem

+ Abel inversion

With 10-20% uncertainty

Obtain a velocity

distribution $f_{gal}(\vec{v})$

Handy if the only available input is $\rho(r)$

Non exhaustive list of articles where you can find estimates for the useful astrophysical parameters needed for DMDD

arXiv ou doi	Date	Auteurs	Vesc (km/s)	V0 (km/s)	Vc (km/s)	rho_0 (GeV/ cm3)	arXiv ou doi	Date	Auteurs	Vesc (km/s)	V0 (km/s)	Vc (km/s)	rho_0 cm3)
10.1111/ j.1365-2966. 2011.18564. x		2011 Mc Millan	NS	NS	239+/-5	0.40+/-0.04	10.3847/1538- 4357/ac4244	2022	Necib Lin (single compo) Used Gaia eDR3	472+17-12	NS		235 NS
1608.00971v 3		2016 Mc Millan	NS	NS	232,8+/-3	0.38+/-0.04	1901.02016v2	2019	Delson et al Using Gaia DR2	528+24-25	NS		230 NS
2012.02169		2021 Bovy	NS	NS	244+/-8	NS	1901.02016v2	2019	9 Delson et al Using Gaia DR2	580+/-31	NS	2	230 NS
10.1051/000		2018 Monari	580+/-63	0+/-63 NS 03+/-76	240	NS							
4-6361/2018 33748			* 593+/-76				1411.1325v2	2015	Lavalle Magni	533+54+109-4 1-60	NS		220 0.37+0 -0.03-0
2006.16283v 2		2021 Koppelman Helmi	497+/-8	NS	232,8	NS	1411.1325v2	2015	Lavalle Magni	511+48-35	NS		240 0,43+/-
1309.4293v3		2013 RAVE	533+54-41	NS	220	NS	1411.1325v2	2015	Lavalle Magni	537+44-55	NS	196+26-18	0,25+0
1309.4293v3		2013 RAVE	511+48-35	NS	240	NS	1703.10102v2	2017	Green (Review of	NS	NS	NS	0.22-> fit rang
10.3847/153		2022 Necib Lin (2	445+25-8	NS	235	NS	1904.04781v3		other)				
8-4357/ ac4244		compo) Used Gaia eDR3						2019	Wu, Freese, Kelso & al (review of	NS	NS	NS	0.2->0
	. (.								others)				
NS = Not s	specitie	d					10.3847/1538- 4357/aaf648	2019	Eilers, Hogg, Rix, Ness	NS	NS	229+/-0,2	0.30+/-

