Photometric redshift with Deep Learning technique Application to HSC Deep Survey

Presented by : Reda Ait-Ouahmed, 3rd year PhD student Cosmic Web And Galaxy Evolution With Deep Learning

Supervisors : Stéphane Arnouts, Jérôme Pasquet, Marie Treyer

We will discuss : 1 - Photometric Redshift and Deep Learning 2 - Multimodality 3 - Application To High Redshifts 4 - Mismatch problem

Photometric Redshift Estimation

- SED Fitting : Fitting photometric data to galaxies templates with known properties.
- Machine Learning: Training machine learning models on extracted useful features from photometric data (magnitudes, colors ...etc) while using spectroscopic redshifts as ground truth.
- **Deep Learning**: Training deep neural networks directly on photometric images while using spectroscopic redshifts as ground truth.

Deep network performance compared to released SDSS photo-zs

Convolutional neural networks (CNN)

Model Architecture : Inception

Multi Modal Approach

Comparative results on the SDSS r < 17.8

Normalized Residuals : $\Delta z = (z_{\text{phot}} - z_{\text{spec}})/(1 + z_{\text{spec}})$				
Normalized Mad (Median absolute deviation)	Outliers Fraction (ratio of catastrophic failures)	Bias		
1.48 * Median(∆z –Median(∆z))	$ \Delta z \ge 0.05$	Mean(Δz)		

Experiences	σ	η	$<\Delta z >$
	10-3	%	10-3
SDSS	r < 17.8		
Pasquet et al (19)	09.12	0.31	0.1
Dey et al (22)	08.98	0.19	0.07
Hayat et al (21)	08.25	0.21	0.1
Treyer et al (22)	08.02	0.18	-0.29
Multi-Modal Network	07.82	0.16	-0.36

Application To High Redshifts CLAUDS+HSC : a unique dataset until LSST

Sources Distribution

Sources with spectroscopic Redshift

CNN ZPHOT Compared to SED ZPHOT (G. Desprez et al - 22)

Bright sources (Mag i <= 24)

CNN ZPHOT Compared to SED ZPHOT (G. Desprez et al - 22)

COSMOS2020 for faint sources

COSMOS2020 Z : Sources with 30-bands based SED Redshift

Combining COSMOS2020 and spectroscopic Z sources

CNN ZPHOT Compared to SED ZPHOT on Spectro - COSMOS2020

CNN redshift estimation is sensitive to the photometric image acquisition conditions

Bright Sources 18 <= i <= 24

Faint Sources 24 <= i <= 26.5

CNN redshift estimation is sensitive to the photometric image acquisition conditions

Bright Sources Training Set

Faint Sources Training Set

Redshift training labels

Redshift training labels

Faint Sources Inference (24 <= i <= 26.5)

Independent Test on [OII] Emission Line Galaxies at Z = 1.47 on XMM field Selected with a narrow band filter

Counts

- Integrating multimodality when designing deep network framework for Photo-Z estimation can help
- We can estimate Photo-Z using the **ugrizy** bands with a precision ~ σ 0.01 for sources brighter than **mag i = 24**
- It's challenging to have training labels for sources fainter than mag i = 24. Domain matching can help with this !