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The Phase-Il Upgrade of the LHC

Upgrade of the ATLAS experiment
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® The High Luminosity LHC (HL-LHC) is an important milestone for particle physics

® To increase the luminosity to study rare processes

® To increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing
® The detectors will be upgraded to cope with the high collision rate at the HL-LHC

® |n particular the ATLAS calorimeter readout electronics will be completely replaced



ATLAS Liquid Argon Calorimeter

Energy reconstruction in the LAr calorimeter

The Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by
electromagnetically interacting particles
® Consisting of &~ 182 000 calorimeter cells

® Passing particles ionize the material
® Bipolar pulse shape with total length of up to 750 ns (30 BCs)
® Pulse is sampled and digitized at 40MHz

® Energy reconstruction is done in real-time and used in triggering decision
® Using the digitized samples from the pulse

v % i ATLAS

outer copper layer
Inner r ayer
e

auder coper layer

staiiess stsel
ge

LAr electromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel (EMB)

L forwerd (FCol)

n | ooty
000 200 300 400 500 600
Time (ns)



Energy Reconstruction

Energy reconstruction in the LAr calorimeter

e Current energy reconstruction uses the
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LAr Electronics Upgrade
Energy Reconstruction in Run-4
® LAr Signal Processor (LASP) board
® For Phase-ll one FPGA processes 384 channels and latency requirement of 125 ns

® Phase-ll electronics with high-end FPGAs

® Increased computing capacity
® |mproved online energy reconstruction using machine learning-based methods

1 e ‘ T . The board is being tested with Intel

'ﬂw i Stratix 10 FPGAs but will be

upgraded to Agilex



Table of Contents

2. Network Architectures



RNN Architecture

Time series processing with Recurrent Neural Networks (RNNs)

e Recurrent Neural Networks (RNNs) are Vanilla

designed to process time series data y

LSTM

® RNNSs consist of neural network layers that
process by combining new time input with

past processed state

® Vanilla RNN is the smallest RNN structure
e Long Short-Term Memory (LSTM) network for
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RNNs for Energy Reconstruction

Using many-to-one and many-to-many networks for energy reconstruction

® Use digitized samples as inputs for the
recurrent network
® Sliding window
® Full sequence split into overlapping
subsequences with a sliding window
® One energy prediction per subsequence

® Four samples in the peak, one in the past
® Possible for Vanilla RNN and LSTM

® Single cell
® Use the LSTM cell to process all digitized

samples in one continuous chain instead of a

sliding window
® Full history of events available
® Possible only for LSTM
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NN Performance

Resolution and network size

® Qverall better energy resolution than OFMax
® Smaller tails and mean closer to zero
® Best performance with LSTM
® Too large to fit on the FPGA

® CNNs and Vanilla RNN perform well with fewer
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® Clear performance decrease with

NN Performance

Resolution as a function of gap to previous energy deposit in BCs

OFMax at low gap

® All NNs perform better with
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overlapping events

® More past samples allows for
better correction of overlapping
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Quantization Aware Training

Optimizing NNs for firmware

® Math operations in firmware are done using fixed-point
arithmetic

® Quantizing NNs after training known as post-training
quantization (PTQ) with decreases the accuracy

® |tis possible to mitigate this effect with quantization
aware training (QAT)

® Training using math operations as if they were quantized
e Simulation results from High Level Synthesis (HLS)
implementation of RNNs show that the required
bitwidth can be halved by using QAT
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Reconstruction for Full Detector

Pulse Clustering

® Pulse shape differs in the detector

® Reduced performance with differing pulse
shapes

® One NN training will not perform well for the
full detector, nor is 182k NNs feasible

® Need to reduce the number of NNs trained
while maintaining accuracy

® Clustering method used to group detector
regions
® t-SNE from calibration pulses to acquire
clustering
® DBSCAN to automatically classify cluster
® Separation correlates with n according to
pulse shape differences
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Pulse Clustering

Reconstruction in different regions

Evaluate inside same cluster

® Train with one cell, test with another
Same performance as with training and testing
with the same cell

Large performance drop when training with
one cluster and testing with another

| Train with mixed data from all clusters, test
with single cluster

® Mixing data across clusters slightly restores
performance
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Conclusion

Energy reconstruction using recurrent neural networks

Energy reconstruction with RNNs overperforms legacy
algorithms in Phase-Il conditions

® Better energy resolution overall
® Better recovery of energy resolution with overlapping
signals

Implemented and validated in firmware and the
implementations mostly fulfill the LAr real-time
processing requirements

® Testing on DevKits started and is showing good results

Next step is to quantify the effect on object (electrons,
photons) reconstruction and physics performance

Paper published available
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https://link.springer.com/article/10.1007/s41781-021-00066-y
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