From nuclear reactor neutrinos to nuclear fusion reactions in stars

> Aurélie Bonhomme IPHC/DRS/DNE

January 20, 2023

[↶](#page-0-0) [Introduction](#page-3-0) [Stereo](#page-9-0) [Conus](#page-17-0) [Stella](#page-39-0) +

Table of Contents

- **[Experimental neutrino physics](#page-3-1)**
- **[Reactor neutrinos](#page-5-0)**
- **[The Reactor Antineutrino Anomaly](#page-6-0)**

2 [Chasing the light sterile neutrino with STEREO](#page-8-0)

- [Detector and analysis](#page-9-1)
- [Oscillation analysis](#page-14-0)
- **•** [Spectral analysis](#page-15-0)

³ Detecting CE_V[NS at reactor with the CONUS experiment](#page-16-0)

- **[Coherent elastic neutrino-nucleus scattering](#page-17-1)**
- **•** [Experimental setup](#page-23-0)
- [Quenching factor in germanium](#page-26-0)
- **[Physics results](#page-31-0)**

[Fusion reactions studies with STELLA](#page-38-0)

- [Nucleosynthesis and massive stars](#page-39-1)
- [The STELLA experiment and the next steps](#page-40-0)

Table of Contents

[Introduction](#page-2-0)

- **•** [Experimental neutrino physics](#page-3-1)
- **e** [Reactor neutrinos](#page-5-0)
- **[The Reactor Antineutrino Anomaly](#page-6-0)**
- ² [Chasing the light sterile neutrino with STEREO](#page-8-0)
	- [Detector and analysis](#page-9-1)
	- [Oscillation analysis](#page-14-0)
	- **•** [Spectral analysis](#page-15-0)
- Detecting $CE\nu$ [NS at reactor with the CONUS experiment](#page-16-0)
	- **[Coherent elastic neutrino-nucleus scattering](#page-17-1)**
	- **[Experimental setup](#page-23-0)**
	- [Quenching factor in germanium](#page-26-0)
	- [Physics results](#page-31-0)
	- [Fusion reactions studies with STELLA](#page-38-0)
		- [Nucleosynthesis and massive stars](#page-39-1)
		- [The STELLA experiment and the next steps](#page-40-0)

Experimental neutrino physics: history in a nutshell

- ▶ 1956: first detection! (reactor ν) IBD: $p + \bar{\nu}_e \rightarrow n + e^+$: $\sigma \sim 6 \times 10^{-44}$ cm²
- \blacktriangleright 1962: ν exist in different flavors: leptonic flavors ν_e , ν_μ , ν_τ
- 1973: discovery of weak neutral currents
- 1998: Super-Kamiokande (atmospheric ν) 2002: SNO – (solar nu) \rightarrow awarded by the Nobel Prize 2015 " for the discovery of neutrino oscillations, which shows that neutrinos have mass."

Experimental neutrino physics: a very promising program!

Still a lot of open questions:

- ▶ Mass ordering? JUNO, KM3Net, HK, DUNE...
- \blacktriangleright CP violation? T2K/HK, DUNE
- ▶ Absolute mass? Nature? Katrin, Gerda, Cupid...
- ▶ Presence of sterile neutrino states? **STEREO**
- ▶ Non standard interactions? CONUS

45m

20,000 tons of liquid scintillator

260,000 tons of water

Reactor neutrino experiments: power plants as intense sources

Fission of ^{235}U (+ ^{239}Pu , ^{238}U and ^{241}Pu): $\bar{\nu}_e$ from (thousands of) β -decays of fission fragments (up to \sim 10 MeV)

For each fission isotope $i\colon \mathsf{S}_i(\mathsf{E}_{\nu}) = \sum_j \mathsf{b}_j \mathsf{E}_{\beta\ j}(\mathsf{E}_{\nu})$

Experimentally:

▶ Direct measure at reactors: Double Chooz, Daya Bay, RENO \rightarrow measure of osc. param. θ_{13} \rightarrow provide very precise reference measurements for comparison

Predictions:

- ▶ Summation method sum of all branches from nuclear databases
- \triangleright Conversion method (HM) reference data-driven approach, effective conversion of virtual β branches from e⁻ to $\bar{\nu}_e$ spectrum

The Reactor Antineutrino Anomaly (RAA)

Phys. Rev. D 83[, 073006 \(2011\)](https://doi.org/10.1103/PhysRevD.83.073006)

L/E \sim 10 m/3 MeV $\rightarrow \sim$ 1eV sterile neutrino Two new parameters: $\sin^2(2\theta_{\textit{new}})$ and $\Delta m^2_{\textit{new}}$

Table of Contents

[Introduction](#page-2-0)

- **[Experimental neutrino physics](#page-3-1)**
- **[Reactor neutrinos](#page-5-0)**
- **[The Reactor Antineutrino Anomaly](#page-6-0)**

2 [Chasing the light sterile neutrino with STEREO](#page-8-0)

- **•** [Detector and analysis](#page-9-1)
- [Oscillation analysis](#page-14-0)
- **[Spectral analysis](#page-15-0)**

Detecting $CE\nu$ [NS at reactor with the CONUS experiment](#page-16-0)

- **[Coherent elastic neutrino-nucleus scattering](#page-17-1)**
- **[Experimental setup](#page-23-0)**
- [Quenching factor in germanium](#page-26-0)
- [Physics results](#page-31-0)
- [Fusion reactions studies with STELLA](#page-38-0)
	- [Nucleosynthesis and massive stars](#page-39-1)
	- [The STELLA experiment and the next steps](#page-40-0)

The STEREO experiment

STEREO @ the ILL research facility, Grenoble:

- ▶ Data taking 2017-2020
- **•** Pure ²³⁵U $\bar{\nu}_e$ flux **@10m** 58 MW $_{th}$ reactor core $10^{19} \bar{\nu}_e \bar{s}^{-1}$

STEREO collaboration:

∼ 30 scientists, 5 institutes

Nature 613, 257–261 (2023)

Designed for a relative measurement in 6 identical filled with Gd doped liquid scintillator

 $oscillation \rightarrow energy \, distributions$

$\bar{\nu}_e$ detection principle

STEREO challenges:

- ▶ \sim 400 $\bar{\nu}_e$ /day: statistics, long-term measurement \rightarrow stability
- ▶ see-level (15 m w.e. overburden) \rightarrow cosmic background!
- **▶ precise energy measurement, comparison to MC** \rightarrow **energy scale, detector response**
- ▶ Control of the detector response: calibration monitoring, correction of drifts, MC tuning
	- \rightarrow Reconstructed energy stable at 0.25 % level over three years of data taking
- ▶ Accurate control of the energy scale:
	- \rightarrow Distortions constrained at the percent level

[↶](#page-0-0) [Introduction](#page-3-0) [Stereo](#page-9-0) [Conus](#page-17-0) [Stella](#page-39-0) [+](#page-0-1)

- ▶ Correct modelisation of Gd γ cascade of primary importance for small detectors
- Major improvement: collaboration with FIFRELIN \rightarrow implement deexcitation of Gd isotopes using experimental data completed by nuclear models
- \triangleright Systematic uncertainty from neutron detection: sub-percent level

 $\bar{\nu}_e$ signal extraction from reactor-on data, with self-consistent background rescaling for each cell, energy bin

[↶](#page-0-0) [Introduction](#page-3-0) [Stereo](#page-9-0) [Conus](#page-17-0) [Stella](#page-39-0) [+](#page-0-1)

Oscillation analysis **Nature 613**[, 257–261 \(2023\)](https://doi.org/10.1038/s41586-022-05568-2)

 $\bar{\nu}_e$ spectra deconvoluted from detector response Ratio to HM prediction

News & views Particle physics Nuclear reaction rules out neutrino hypothesis

Jun Cao

An anomalous measurement from a nuclear reactor triggered a three-year campaign to find an elusive particle called the sterile neutrino. The search shows definitively that sterile neutrinos don't exist - but the anomaly persists. See p.257

i.e. a "nuclear explanation" for the reactor anomaly! (instead of a sterile neutrino...)

- \blacktriangleright HM conversion spectra: overall 5% normalization error of ^{235}U (+ power reactor experiments)
- Improved summation models: new TAGS nuclear data help!

Table of Contents

- **[Introduction](#page-2-0)**
	- **[Experimental neutrino physics](#page-3-1)**
	- **[Reactor neutrinos](#page-5-0)**
	- **[The Reactor Antineutrino Anomaly](#page-6-0)**
- ² [Chasing the light sterile neutrino with STEREO](#page-8-0)
	- [Detector and analysis](#page-9-1)
	- [Oscillation analysis](#page-14-0)
	- **•** [Spectral analysis](#page-15-0)

³ Detecting CE_V[NS at reactor with the CONUS experiment](#page-16-0)

- **[Coherent elastic neutrino-nucleus scattering](#page-17-1)**
- [Experimental setup](#page-23-0)
- [Quenching factor in germanium](#page-26-0)
- [Physics results](#page-31-0)
- [Fusion reactions studies with STELLA](#page-38-0)
	- [Nucleosynthesis and massive stars](#page-39-1)
	- [The STELLA experiment and the next steps](#page-40-0)

2017: a newly experimentally accessible neutrino channel!

Coherent elastic neutrino-nucleus scattering (CEvNS)
\n
$$
\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} \underbrace{[N - (1 - 4\sin^2\theta_w)Z]}_{\sim N^2} \underbrace{F^2(q^2)}_{\rightarrow 1} M \left(1 - \frac{MT}{2E_\nu^2}\right)
$$

- ▶ Low momentum transfer full coherency feature: $\sigma \alpha$ N² $\sin^2(\theta_{\rm w}) \sim$ 0.238 at low energies and F(q 2) ~ 1 fully coherent in Ge for $E_{\nu} \leq 30$ MeV
- only experimentally accessible observable:

2017: a newly experimentally accessible neutrino channel!

Coherent elastic neutrino-nucleus scattering (CEvNS)
\n
$$
\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} \underbrace{[N - (1 - 4\sin^2\theta_w)Z]}_{\sim N^2} \underbrace{F^2(q^2)}_{\rightarrow 1} M \left(1 - \frac{MT}{2E_\nu^2}\right)
$$

- ▶ Low momentum transfer full coherency feature: $\sigma \alpha$ N² $\sin^2(\theta_{\rm w}) \sim$ 0.238 at low energies and F(q 2) ~ 1 fully coherent in Ge for $E_{\nu} \leq 30$ MeV
- \triangleright only experimentally accessible observable: low energy recoil of the nucleus! $T_{\text{max}} \alpha$ 1/A

 $CE\nu$ NS already detected with accelerator neutrinos. What about reactor neutrinos?

 $CE\nu$ NS already detected with accelerator neutrinos. What about reactor neutrinos?

 $CE\nu$ NS already detected with accelerator neutrinos. What about reactor neutrinos?

 $CE\nu$ NS already detected with accelerator neutrinos. What about reactor neutrinos?

CONUS @ the Brokdorf nuclear power plant (KBR), Germany:

- ▶ Data taking 2018-2022
- \blacktriangleright High $\bar{\nu}_e$ flux @17m from the 3.9 GW $_{th}$ reactor core $10^{13} \bar{\nu}_e \bar{s}^{-1}$ cm⁻²

CONUS collaboration:

17 scientists (MPIK, KBR)

The CONUS experiment $E_{ur. Phys. J. C 81 (2021) 3, 267}$

4 p-type point contact HPGe (1kg each)

- ▶ very low background components
- ▶ pulser resolution (FWHM) $<$ 85 eV_{ee} \rightarrow threshold $\lesssim 300 \, \mathrm{eV_{ee}}$
- electric cryogenic cooling

- Passive + active shield
	- \blacktriangleright Lead with low ²¹⁰Pb content
	- ▶ Borated PE, pure PE
	- Active μ -veto (plastic scintillator)

- External natural radioactivity and cosmogenic background: reduced by 10^4
- ▶ Negligible reactor-correlated background inside shield
- Residual background well understood, fully described by MC simulations

- ▶ Last piece needed for a correct data interpretation: detector response: quenching HPGe: measure ionization energy only
	- \rightarrow precise knowledge needed!

Ionization quenching factor: $E_{\text{ioniz}}/E_{\text{nucleon}}$

- ▶ Extensively measured for 10-100 keV Data lacking in the keV range
- \blacktriangleright Lindhard model: $Q(E) = f(k)$ Validity at low energy? kinematic cutoff, enhancement, temperature dependence...?

 \rightarrow dedicated effort to measure it directly at low energy: Quench'inGe setup @ PTB (2020)

Ionization quenching factor: direct measurement

 $CE\nu$ NS data interpretation crucially relies on the quenching factor \rightarrow Quench'inGe at the PIAF accelerator facility (PTB, Germany)

Direct, model-independent meas. using neutrons (nuclear recoils):

$$
\boxed{\mathbf{Q}\equiv\frac{\mathbf{E}_{\text{ioniz}}^{\text{meas}}}{\mathbf{E}_{\text{nr}}(\theta_{\text{lab}},\mathbf{E}_{\text{n}})}}
$$

Pulsed monoenergetic neutron beams from proton beam via Li(p,n)

- ▶ 250-800 keV neutrons →∼ keV recoils in Ge
- $▶ \sim 10^3$ n·cm⁻²·s⁻¹ on Ge target
- ▶ 3% width @ 500keV

Ionization quenching factor: direct measurement

 $CE\nu$ NS data interpretation crucially relies on the quenching factor \rightarrow Quench'inGe at the PIAF accelerator facility (PTB, Germany)

Direct, model-independent meas. using neutrons (nuclear recoils):

$$
Q\equiv \frac{\text{E}_{\text{ioniz}}^{\text{meas}}}{\text{E}_{\text{nr}}(\theta_{\text{lab}},\text{E}_{\text{n}})}
$$

Experimental setup (Oct. 2020):

- ▶ Neutron collimation ⊘ 35 mm beam at HPGe target
- ▶ Dedicated thin HPGe target no material on beam axis FWHM: 135 eV @ 5.9 keV
- ▶ Liquid scintillators (LS) array low energy threshold, good PSD ∼ 70 % neutron detection eff.

Data analysis: signal selection via triple coincidence: beam stop – target HPGe – LS detectors $\vert \mathbf{Q} \equiv$

 \blacktriangleright $\mathsf{E}_{\text{ioniz}}^{\text{meas}}$: ionization energy energy scale: $Fe-55 + Ge$ activation lines precise modeling of detector response

 \blacktriangleright E_{nr}(θ_{lab} , E_n): nuclear recoil energy En from time-of-flight scattering angles (θ_{lab}) at the 1° level

\sim 16 h beam exposure:

- ▶ beam energy varied between 250 keV – 800 keV
- \blacktriangleright angles varied between 18° and 45°

 \rightarrow probe nuclear recoils between 0.4 and 6 keV

All data set (\neq beam energies, \neq LS detectors...) compatible with each other

- Systematic uncertainties included: geometry, detector response, beam energy
- Data compatible with Lindhard model: $k = 0.162 \pm 0.004$ (stat+syst)

Data quality cuts:

- ▶ Discard high temperature variations periods
- ▶ Discrimination of microphonic and spurious events via time difference

Region Of Interest (ROI):

- ▶ Trigger efficiency ∼100 %
- ▶ Electronic noise component described by an exponential, $contribution < 4 \times MC$

Run-1+2 exposure:

248.7 kg d (reactor-on) 58.8 kg d (reactor-off)

- \rightarrow Simultaneous likelihood fit (ON/OFF) for all detectors & runs
	- \triangleright signal prediction: CE ν NS (theory), reactor spectrum
	- background description: $MC +$ electronic noise
	- nuisance parameters for systematic uncertainties

CONUS upper limit for $k = 0.16$: 85 counts (17 times above expectation) \rightarrow challenge for the detection of CE ν NS at reactor and for CONUS!

CONUS upper limit for $k = 0.16$: 85 counts (17 times above expectation) \rightarrow challenge for the detection of CE ν NS at reactor and for CONUS!

Imprints of new physics through the modification of the $CE\nu NS$ cross-section \rightarrow look for experimental signatures in CONUS data!

- ▶ Non-standard neutrino-quark interactions (NSIs): extension of the neutral current with new mediators (at reactor: sensitive to $\varepsilon_{\text{ee}}^{d}$ and $\varepsilon_{\text{ee}}^{u}$) – vector case: $Q_W \mapsto \widetilde{Q}_{NSI}(\{\varepsilon^q_{\alpha\beta}\})$
	- tensor case: higher end point \rightarrow competitive limits (low background)
- \blacktriangleright Light mediators: simplified models using universal couplings, CONUS sensitive to low mediator masses
- ▶ Neutrino electromagnetic properties: from $\bar{\nu}_e$ -electron scattering channel: μ_{ν} < 7.5 · 10⁻¹¹ μ_{B} (90% C.L.).

Perspectives for CONUS and $CE\nu$ NS at reactor site

Promising last CONUS dataset (Run5, 2020–2022):

- ▶ Extended statistics:
	- improved stability conditions
	- exceptionally long reactor-OFF dataset in 2022
- ▶ New acquisition system:
	- Pulse Shape Discrimination (surface vs. bulk):
		- \rightarrow 20% additional background rejection!
	- Lower energy threshold (≲ 250 eV)

 \rightarrow significantly improved sensitivity (CE ν NS, BSM), publications coming soon!

▶ + exploring new reactor sites

\blacktriangleright Hints for light sterile neutrino(s) at the eV scale (short baselines):

- Reactor Antineutrino Anomaly $→$ $~1$ eV excluded by STEREO (and others)
- Gallium anomaly: higher Δ m 2 regions? (recently revived by BEST?)
- Accelerator SBL anomalies (LSND, MiniBoone): wait for final MicroBoone results...

\triangleright Search for CE_VNS at reactors: rich physics program with small experiments!

-
-
-
-
- -
	-

\blacktriangleright Hints for light sterile neutrino(s) at the eV scale (short baselines):

- Reactor Antineutrino Anomaly $\rightarrow \sim 1$ eV excluded by STEREO (and others)
- Gallium anomaly: higher Δ m 2 regions? (recently revived by BEST?)
- Accelerator SBL anomalies (LSND, MiniBoone): wait for final MicroBoone results...

\triangleright Search for CE ν NS at reactors: rich physics program with small experiments!

- First detection still pending!
- Opens new possibilities to explore BSM physics
- Complementary approaches and technologies
- Synergies with dark matter searches

\blacktriangleright The yet unexplored sub-keV region:

- Quenching factor crucial, recent tensions, renewed interest!
- Unknown backgrounds: systematic low energy excess to be understood

Table of Contents

- **[Introduction](#page-2-0)**
	- **[Experimental neutrino physics](#page-3-1)**
	- **[Reactor neutrinos](#page-5-0)**
	- **[The Reactor Antineutrino Anomaly](#page-6-0)**
- ² [Chasing the light sterile neutrino with STEREO](#page-8-0)
	- [Detector and analysis](#page-9-1)
	- [Oscillation analysis](#page-14-0)
	- **•** [Spectral analysis](#page-15-0)
- Detecting $CE\nu$ [NS at reactor with the CONUS experiment](#page-16-0)
	- **[Coherent elastic neutrino-nucleus scattering](#page-17-1)**
	- **[Experimental setup](#page-23-0)**
	- [Quenching factor in germanium](#page-26-0)
	- [Physics results](#page-31-0)
- [Fusion reactions studies with STELLA](#page-38-0)
	- [Nucleosynthesis and massive stars](#page-39-1)
	- [The STELLA experiment and the next steps](#page-40-0)

Nucleosynthesis and massive stars

- \blacktriangleright Synthesis of elements: lives and deaths of stars
- ▶ Massive stars: succession of burning phases, shell structure
- \blacktriangleright Stellar evolution driven by nuclear reactions

The evolving composition of the Universe

The STELLA experiment and the ${}^{12}C+{}^{12}C$ case

- \triangleright ¹²C+¹²C: the first fusion to be considered for massive stars!
- Astrophysical region of interest: the Gamov window \rightarrow extremely low cross-sections! (\leq pb!) Challenges: beam intensity, stability, background, efficiency
- ▶ STELLA: direct measurement with coincidence between charged particles and deexcitation gammas
- ▶ Strong nuclear structure effects:
	- \rightarrow Hindrance? Clusters? Adsley et al. PRL 129[, 102701 \(2022\)](https://doi.org/10.1103/PhysRevLett.129.102701)
	- \rightarrow Astrophysical impact? [Monpribat](http://dx.doi.org/10.1051/0004-6361/202141858) et al. A&A 660 (2022)

STELLA at Andromède, Orsay

Astrophysical factor $S = E\sigma(E)exp(2\pi\eta)$

[↶](#page-0-0) [Introduction](#page-3-0) [Stereo](#page-9-0) [Conus](#page-17-0) [Stella](#page-39-0) [+](#page-0-1)

The next steps with STELLA: ${}^{12}C+{}^{16}O$ and ${}^{16}O+{}^{16}O$

- \blacktriangleright Next natural reactions of astrophysical relevance: $^{12}C+^{16}O$: e.g. late carbon burning phase $16O+16O$: the next binary fusion
- Nuclear physics: fusion hindrance? Resonances?
- Scarce data in the relevant Gamov window...

\rightarrow Measure with STELLA! Additional challenge: increasing complexity of exit channels:

- ▶ Charged particle detectors upgrade: improved angular coverage, adapted thickness (higher energies), resolve complex final states
- Additional beam focusing element for an optimal beam spot size

Thank you for your attention!

