From nuclear reactor neutrinos to nuclear fusion reactions in stars

Aurélie Bonhomme IPHC/DRS/DNE

January 20, 2023

Table of Contents

Introduction

- Experimental neutrino physics
- Reactor neutrinos
- The Reactor Antineutrino Anomaly

Chasing the light sterile neutrino with STEREO

- Detector and analysis
- Oscillation analysis
- Spectral analysis

3 Detecting $CE\nu NS$ at reactor with the CONUS experiment

- Coherent elastic neutrino-nucleus scattering
- Experimental setup
- Quenching factor in germanium
- Physics results

Fusion reactions studies with STELLA

- Nucleosynthesis and massive stars
- The STELLA experiment and the next steps

Table of Contents

Introduction

- Experimental neutrino physics
- Reactor neutrinos
- The Reactor Antineutrino Anomaly
- 2 Chasing the light sterile neutrino with STEREO
 - Detector and analysis
 - Oscillation analysis
 - Spectral analysis
- \bigcirc Detecting CEuNS at reactor with the CONUS experiment
 - Coherent elastic neutrino-nucleus scattering
 - Experimental setup
 - Quenching factor in germanium
 - Physics results
- Fusion reactions studies with STELLA
 - Nucleosynthesis and massive stars
 - The STELLA experiment and the next steps

Experimental neutrino physics: history in a nutshell

- ▶ 1956: first detection! (reactor ν) IBD: p + $\bar{\nu}_e \rightarrow$ n + e⁺: $\sigma \sim 6 \times 10^{-44} cm^2$
- 1962: ν exist in different flavors: leptonic flavors ν_e, ν_μ, ν_τ
- 1973: discovery of weak neutral currents
- 1998: Super-Kamiokande (atmospheric ν)
 2002: SNO − (solar nu)
 → awarded by the Nobel Prize 2015 " for the discovery of neutrino oscillations, which shows that neutrinos have mass."

Experimental neutrino physics: a very promising program!

Still a lot of open questions:

- Mass ordering? JUNO, KM3Net, HK, DUNE...
- CP violation? T2K/HK, DUNE
- Absolute mass? Nature? Katrin, Gerda, Cupid...
- Presence of sterile neutrino states? STEREO
- Non standard interactions? CONUS

45m

20,000 tons of liquid scintillator

260,000 tons of water

Reactor neutrino experiments: power plants as intense sources

Fission of ²³⁵U (+ ²³⁹Pu, ²³⁸U and ²⁴¹Pu): $\bar{\nu}_e$ from (thousands of) β -decays of fission fragments (up to ~ 10 MeV)

For each fission isotope *i*: $S_i(E_{\nu}) = \sum_j b_j E_{\beta j}(E_{\nu})$

Experimentally:

► Direct measure at reactors: Double Chooz, Daya Bay, RENO → measure of osc. param. θ₁₃ → provide very precise reference measurements for comparison

Predictions:

- Summation method sum of all branches from nuclear databases
- Conversion method (HM) reference data-driven approach, effective conversion of virtual β branches from e⁻ to ν
 _e spectrum

The Reactor Antineutrino Anomaly (RAA)

Phys. Rev. D 83, 073006 (2011)

 $L/E \sim 10 \text{ m/3 MeV} \rightarrow \sim 1 \text{eV}$ sterile neutrino Two new parameters: $\sin^2(2\theta_{new})$ and Δm_{new}^2

Table of Contents

Introduction

- Experimental neutrino physics
- Reactor neutrinos
- The Reactor Antineutrino Anomaly

Chasing the light sterile neutrino with STEREO

- Detector and analysis
- Oscillation analysis
- Spectral analysis

3 Detecting $CE\nu NS$ at reactor with the CONUS experiment

- Coherent elastic neutrino-nucleus scattering
- Experimental setup
- Quenching factor in germanium
- Physics results
- Fusion reactions studies with STELLA
 - Nucleosynthesis and massive stars
 - The STELLA experiment and the next steps

The STEREO experiment

STEREO @ the ILL research facility, Grenoble:

- Data taking 2017-2020
- ► Pure ²³⁵U $\bar{\nu}_e$ flux @10m 58 MW_{th} reactor core 10¹⁹ $\bar{\nu}_e$ s⁻¹

STEREO collaboration:

 \sim 30 scientists, 5 institutes

Nature 613, 257-261 (2023)

Designed for a relative measurement in 6 identical filled with Gd doped liquid scintillator

oscillation \rightarrow energy distorsions

$\bar{\nu}_e$ detection principle

 $ar{
u}_e$ signature: Inverse Beta Decay (IBD) reaction: $ar{
u}_e + p
ightarrow e^+ + n$

STEREO challenges:

- ▶ ~ 400 $\bar{\nu}_e$ /day: statistics, long-term measurement → stability
- ▶ see-level (15 m w.e. overburden) \rightarrow cosmic background!
- \blacktriangleright precise energy measurement, comparison to MC \rightarrow energy scale, detector response

- Control of the detector response: calibration monitoring, correction of drifts, MC tuning
 - \rightarrow Reconstructed energy stable at 0.25 % level over three years of data taking
- Accurate control of the energy scale:

Counts (a.u.)

0.1

0.08

0.06

0.04

0.02

12B data

eimulation

10

Reconstructed energy (MeV)

 \rightarrow Distortions constrained at the percent level

Spata / SMC

1.15

1.05

0.95

0.9

0.85

0.8

12

Reconstructed energy (MeV)

14

- Correct modelisation of Gd γ cascade of primary importance for small detectors
- Major improvement: collaboration with FIFRELIN
 implement deexcitation of Gd isotopes using
 experimental data completed by nuclear models
- Systematic uncertainty from neutron detection: sub-percent level

 $\bar{\nu}_e$ signal extraction from reactor-on data, with self-consistent background rescaling for each cell, energy bin

 Introduction Stereo Conus Stella + 10 / 30

Oscillation analysis

 $\bar{\nu}_e$ spectra deconvoluted from detector response

Particle physicsNews & viewsNuclear reaction rules outneutrino hypothesis

Jun Cao

An anomalous measurement from a nuclear reactor triggered a three-year campaign to find an elusive particle called the sterile neutrino. The search shows definitively that sterile neutrinos don't exist – but the anomaly persists. See p.257 Ratio to HM prediction

i.e. a "nuclear explanation" for the reactor anomaly! (instead of a sterile neutrino...)

- HM conversion spectra: overall 5% normalization error of ²³⁵U (+ power reactor experiments)
- Improved summation models: new TAGS nuclear data help!

Table of Contents

- Introduction
 - Experimental neutrino physics
 - Reactor neutrinos
 - The Reactor Antineutrino Anomaly
- 2 Chasing the light sterile neutrino with STEREO
 - Detector and analysis
 - Oscillation analysis
 - Spectral analysis

Oetecting CE ν NS at reactor with the CONUS experiment

- Coherent elastic neutrino-nucleus scattering
- Experimental setup
- Quenching factor in germanium
- Physics results
- Fusion reactions studies with STELLA
 - Nucleosynthesis and massive stars
 - The STELLA experiment and the next steps

2017: a newly experimentally accessible neutrino channel!

wherent elastic neutrino-nucleus scattering (CE
$$\nu$$
NS)

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} \underbrace{\left[N - (1 - 4\sin^2\theta_w)Z\right]^2}_{\sim N^2} \underbrace{F^2(q^2)}_{\rightarrow 1} M \left(1 - \frac{MT}{2E_\nu^2}\right)$$

- Low momentum transfer full coherency feature: $\sigma \propto N^2 \sin^2(\theta_w) \sim 0.238$ at low energies and $F(q^2) \sim 1$ fully coherent in Ge for $E_{\nu} \lesssim 30 \text{ MeV}$
- only experimentally accessible observable: low energy recoil of the nucleus!
 T_{max} α 1/A
 ⇒ very low energy threshold required!

2017: a newly experimentally accessible neutrino channel!

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} \underbrace{\left[N - (1 - 4\sin^2\theta_w)Z\right]^2}_{\sim N^2} \underbrace{F^2(q^2)}_{\rightarrow 1} M\left(1 - \frac{MT}{2E_\nu^2}\right)$$

- Low momentum transfer full coherency feature: $\sigma \propto N^2 \sin^2(\theta_w) \sim 0.238$ at low energies and F(q²)~ 1 fully coherent in Ge for $E_{\nu} \lesssim 30 \text{ MeV}$
- only experimentally accessible observable: low energy recoil of the nucleus!
 T_{max} α 1/A
 ⇒ very low energy threshold required!

CE_vNS already detected with accelerator neutrinos. What about reactor neutrinos?

 $\bar{\nu}_e$ from β -decays of fissile isotopes

 $u_{\mu}, \, ar{
u}_{\mu} \,$ and u_e from π -decay at rest

CE_VNS already detected with accelerator neutrinos. What about reactor neutrinos?

 $\bar{\nu}_e$ from β -decays of fissile isotopes

 $u_{\mu}, \, ar{
u}_{\mu} \,$ and u_e from π -decay at rest

CE_vNS already detected with accelerator neutrinos. What about reactor neutrinos?

 $\bar{\nu}_e$ from β -decays of fissile isotopes

 $u_{\mu}, \, \bar{\nu}_{\mu} \,$ and u_e from π -decay at rest

CE_vNS already detected with accelerator neutrinos. What about reactor neutrinos?

 $\bar{\nu}_e$ from β -decays of fissile isotopes

 $u_{\mu}, \, \bar{\nu}_{\mu} \,$ and u_e from π -decay at rest

\sim Introduction Stereo Conus Stella + $15\,/\,30$

CONUS collaboration: 17 scientists (MPIK, KBR)

Reactor site: additional challenges: no fresh air (radon), limited access, no remote control...

Data taking 2018-2022

• High $\bar{\nu}_e$ flux @17m from the 3.9 GW_{th} reactor core $10^{13} \bar{\nu}_e \ s^{-1} \text{cm}^{-2}$

CONUS @ the Brokdorf nuclear power plant (KBR), Germany:

The CONUS experiment

4 p-type point contact HPGe (1kg each)

- very low background components
- ▶ pulser resolution (FWHM) $< 85 \, eV_{ee}$ → threshold $\lesssim 300 \, eV_{ee}$
- electric cryogenic cooling

Passive + active shield

- Lead with low ²¹⁰Pb content
- Borated PE, pure PE
- Active µ-veto (plastic scintillator)

Background suppression

- External natural radioactivity and cosmogenic background: reduced by 10⁴
- Negligible reactor-correlated background inside shield
- Residual background well understood, fully described by MC simulations

- Last piece needed for a correct data interpretation: detector response: quenching HPGe: measure ionization energy only
 - \rightarrow precise knowledge needed!

Ionization quenching factor: $E_{ioniz}/E_{nucl.rec.}$

- Extensively measured for 10-100 keV
 Data lacking in the keV range
- Lindhard model: Q(E) = f(k) Validity at low energy? kinematic cutoff, enhancement, temperature dependence...?

 \rightarrow dedicated effort to measure it directly at low energy: Quench'inGe setup @ PTB (2020)

Ionization quenching factor: direct measurement

 $CE\nu NS$ data interpretation crucially relies on the quenching factor \rightarrow Quench'inGe at the PIAF accelerator facility (PTB, Germany)

Direct, model-independent meas. using neutrons (nuclear recoils):

$$\mathbf{Q} \equiv \frac{\mathbf{E}_{\text{ioniz}}^{\text{meas}}}{\mathbf{E}_{\text{nr}}(\theta_{\text{lab}},\mathbf{E}_{\text{n}})}$$

Pulsed monoenergetic neutron beams from proton beam via Li(p,n)

- ► 250-800 keV neutrons $\rightarrow \sim$ keV recoils in Ge
- $\blacktriangleright~\sim~10^3 n{\cdot} cm^{-2}{\cdot} s^{-1}$ on Ge target
- 3% width @ 500keV

Ionization quenching factor: direct measurement

 $CE\nu NS$ data interpretation crucially relies on the quenching factor \rightarrow Quench'inGe at the PIAF accelerator facility (PTB, Germany)

Direct, model-independent meas. using neutrons (nuclear recoils):

$$\mathbf{Q} \equiv \frac{\frac{\mathbf{E}_{\text{ioniz}}^{\text{meas}}}{\mathbf{E}_{\text{nr}}(\theta_{\text{lab}},\mathbf{E}_{\text{n}})}$$

Experimental setup (Oct. 2020):

- Neutron collimation
 35 mm beam at HPGe target
- Dedicated thin HPGe target no material on beam axis FWHM: 135 eV @ 5.9 keV
- Liquid scintillators (LS) array low energy threshold, good PSD ~70% neutron detection eff.

Data analysis: signal selection via triple coincidence: beam stop – target HPGe – LS detectors

 E^{meas}_{ioniz}: ionization energy energy scale: Fe-55 + Ge activation lines precise modeling of detector response

► $E_{nr}(\theta_{lab}, E_n)$: nuclear recoil energy E_n from time-of-flight scattering angles (θ_{lab}) at the 1° level

\sim 16 h beam exposure:

- beam energy varied between 250 keV – 800 keV
- angles varied between 18° and 45°

 \rightarrow probe nuclear recoils between 0.4 and 6 keV

- All data set (\neq beam energies, \neq LS detectors...) compatible with each other
- Systematic uncertainties included: geometry, detector response, beam energy
- > Data compatible with Lindhard model: $k = 0.162 \pm 0.004$ (stat+syst)

Data quality cuts:

- Discard high temperature variations periods
- Discrimination of microphonic and spurious events via time difference

Region Of Interest (ROI):

- ► Trigger efficiency ~100 %
- Electronic noise component described by an exponential, contribution < 4× MC

Run-1+2 exposure:

248.7 kg d (reactor-on) 58.8 kg d (reactor-off)

\rightarrow Simultaneous likelihood fit (ON/OFF) for all detectors & runs

- ▶ signal prediction: $CE\nu NS$ (theory), reactor spectrum
- background description: MC + electronic noise
- nuisance parameters for systematic uncertainties

CONUS upper limit for k = 0.16: 85 counts (17 times above expectation) \rightarrow challenge for the detection of CE ν NS at reactor and for CONUS!

CONUS upper limit for k = 0.16: 85 counts (17 times above expectation) \rightarrow challenge for the detection of CE ν NS at reactor and for CONUS!

Imprints of new physics through the modification of the CE ν NS cross-section \rightarrow look for experimental signatures in CONUS data!

- ► Non-standard neutrino-quark interactions (NSIs): extension of the neutral current with new mediators (at reactor: sensitive to ε_{ee}^d and ε_{ee}^u)
 - vector case: $Q_W \mapsto Q_{NSI}(\{\varepsilon^q_{\alpha\beta}\})$
 - − tensor case: higher end point
 → competitive limits (low background)
- Light mediators: simplified models using universal couplings, CONUS sensitive to low mediator masses
- Neutrino electromagnetic properties: from $\bar{\nu}_{e}$ -electron scattering channel: $\mu_{\nu} < 7.5 \cdot 10^{-11} \, \mu_{B}$ (90% C.L.).

Perspectives for CONUS and $\text{CE}\nu\text{NS}$ at reactor site

Promising last CONUS dataset (Run5, 2020-2022):

- Extended statistics:
 - improved stability conditions
 - exceptionally long reactor-OFF dataset in 2022
- New acquisition system:
 - Pulse Shape Discrimination (surface vs. bulk):
 - ightarrow 20% additional background rejection!
 - Lower energy threshold ($\lesssim 250\,\text{eV})$

 \rightarrow significantly improved sensitivity (CE ν NS, BSM), publications coming soon!

+ exploring new reactor sites

Hints for light sterile neutrino(s) at the eV scale (short baselines):

- Reactor Antineutrino Anomaly $\rightarrow \sim 1\,\text{eV}$ excluded by STEREO (and others)
- Gallium anomaly: higher Δm^2 regions? (recently revived by BEST?)
- Accelerator SBL anomalies (LSND, MiniBoone): wait for final MicroBoone results...

Search for CE*v*NS at reactors: rich physics program with small experiments!

- First detection still pending!
- Opens new possibilities to explore BSM physics
- Complementary approaches and technologies
- Synergies with dark matter searches
- The yet unexplored sub-keV region:
 - Quenching factor crucial, recent tensions, renewed interest!
 - Unknown backgrounds: systematic low energy excess to be understood

Hints for light sterile neutrino(s) at the eV scale (short baselines):

- Reactor Antineutrino Anomaly $\rightarrow \sim 1\,\text{eV}$ excluded by STEREO (and others)
- Gallium anomaly: higher Δm^2 regions? (recently revived by BEST?)
- Accelerator SBL anomalies (LSND, MiniBoone): wait for final MicroBoone results...

▶ Search for CE *v*NS at reactors: rich physics program with small experiments!

- First detection still pending!
- Opens new possibilities to explore BSM physics
- Complementary approaches and technologies
- Synergies with dark matter searches

The yet unexplored sub-keV region:

- Quenching factor crucial, recent tensions, renewed interest!
- Unknown backgrounds: systematic low energy excess to be understood

Table of Contents

- Introduction
 - Experimental neutrino physics
 - Reactor neutrinos
 - The Reactor Antineutrino Anomaly
- 2 Chasing the light sterile neutrino with STEREO
 - Detector and analysis
 - Oscillation analysis
 - Spectral analysis
- \bigcirc Detecting CEuNS at reactor with the CONUS experiment
 - Coherent elastic neutrino-nucleus scattering
 - Experimental setup
 - Quenching factor in germanium
 - Physics results
- Fusion reactions studies with STELLA
 - Nucleosynthesis and massive stars
 - The STELLA experiment and the next steps

Nucleosynthesis and massive stars

- Synthesis of elements: lives and deaths of stars
- Massive stars: succession of burning phases, shell structure
- Stellar evolution driven by nuclear reactions

The evolving composition of the Universe

The STELLA experiment and the ${}^{12}C+{}^{12}C$ case

- ▶ ¹²C+¹²C: the first fusion to be considered for massive stars!
- Astrophysical region of interest: the Gamov window → extremely low cross-sections! (≲ pb!) Challenges: beam intensity, stability, background, efficiency
- STELLA: direct measurement with coincidence between charged particles and deexcitation gammas
- Strong nuclear structure effects:
 - → Hindrance? Clusters? Adsley et al. PRL 129, 102701 (2022)
 - \rightarrow Astrophysical impact? Monpribat *et al.* A&A **660** (2022)

STELLA at Andromède, Orsay

Astrophysical factor $S = E\sigma(E)exp(2\pi\eta)$

The next steps with STELLA: $^{12}\text{C}+^{16}\text{O}$ and $^{16}\text{O}+^{16}\text{O}$

- Next natural reactions of astrophysical relevance: ¹²C+¹⁶O: e.g. late carbon burning phase ¹⁶O+¹⁶O: the next binary fusion
- Nuclear physics: fusion hindrance? Resonances?
- Scarce data in the relevant Gamov window...

\rightarrow Measure with STELLA! Additional challenge: increasing complexity of exit channels:

- Charged particle detectors upgrade: improved angular coverage, adapted thickness (higher energies), resolve complex final states
- Additional beam focusing element for an optimal beam spot size

