

Cryogenic Material Tests Karlsruhe CryoMaK – an overview

Dr. Klaus-Peter Weiss

INSTITUTE FOR TECHNICAL PHYSICS

Institute for Technical Physics *Research Topic*

- Superconducting and Cryo-Materials Prof. Dr. B. Holzapfel
- Superconducting Power Engineering Applications *Prof. Dr. Ing. M. Noe*

Superconducting Magnet Technology *Prof. Dr. T. Arndt*

Fusion Fuel Cycle Technologies Dr. C. Day

2

Cryogenic material laboratory within ITEP

Characterize materials at operational temperatures \rightarrow 400 K – 4.2 K

Advantage of combination of test methods in one laboratory with expertise of about 30 years Cryogenic Material tests Karlsruhe

Cryogenic material laboratory within ITEP

Major projects 2023

Material characterization and development (thermo-physical/mechanical):

Magnet Technology

Structural and functional material for fusion magnets High strength materials (EUROfusion and Fusion startups)

Standardization IEC/ISO

Testfacility CryoMaK – Physical Properties

Physical Property Measurement System (9T and 14T, 1.9K - 400K) Heat capacity, thermal conductivity, electrical conductivity, dilatometer

Mechanical investigation (4.2K – 400K)

ATLAS axial \pm 650 kN "Full-Size" components

PHOENIX axial ±100 kN

Mechanical investigation (4.2K -300K)

MTS25 & 50 axial \pm 25 kN und \pm 50 kN

TORSIONaxial± 100 kNtorsion± 1000 Nm

Impact test (77K/RT)

Charpy 450J

Drop weight tower

Poisson-ratio assembly

10-fold specimen rig

High-precision Extensometer

high-sensitive load cell

Standard Test Method for Tensile Provide Institute of Technology of Polymer Matrix Composite Materials

- Specimen size according to standard
- Specimen shown equipped with several clip-on-extensometer

Fraunhofer Karlsruhe Institute of Technology **10** 22.06.23

Failure criteria validation sample testing report

European Space Agency

<	laminates und IT – Die Fors thermomecha	schungsuniversität	in der H	lelmholtz-Gem	einschaft
	Update 1	······································			

Figure 16 Test configuration for Poisson determination from transversal tensile specimen at 4K. 57

		thickness	Dr.	Dr. Klaus-Peter Weiss - ITEP					
К	mm	mm	GPa	GPa	_	GPa			

ASTM D3410/D3410M & ression/Shear

Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Schoor Looding

Shear Loading

Figure 14 Compression test according to AS_{Karlsruhe Institute of Technolog}

Cryogene Materialtests Kar CryoMa

Compression/Shear Loading by Tilted Test Rig

Figure 19 V-notch shear test samples before test on the left, on the right side the test rig equipped with sample

Figure 2 Compression-shear tilted test arrangement for RT and 4K test

	Dr. Kl	aus-Pete	shear Stress-	Compressive		
		Load	sin()			
mm	mm ²	kN	MPa	MPa		

11 22.06.23 KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Table

	uis-5.5	4.2	24.55	12.50	7.004	12.50	0.55	
	Meanvalue				1	3.62 +/- 2.74		
	dls-6*	RT	$G_{\mu\nu} = \frac{9 \cdot P \cdot a^{2} \cdot a^{2}}{4}$	<u>d·1000</u>	21.804	34.05	0.68	
Further test	maeth		$\frac{2 \cdot w}{2 \cdot w} \frac{1}{2}$	$4l^3 + 3a^3$		35.78	0.71	
						•		
Double Lap	Shear	A	•	к	mm mm m	mm	Ν	mm
	_		sample-2	RT	25,1 100 4.	3 35	1468	6,545

ASTM D3528

Fracture Mode II **ASTM D7905/D79**

Fracture Mode I **ASTM D5528**

D2344/D2344M Short-Beam Strength D2094 Specimens for Adhesion Tests

J/m^2 5573,2

5518,4

5623,9

5439,2

5657,5

428.6

450,3

427,2

443,0

453.6

6,859

6,776

6,772

6,617

1.687

1.707

1,685

1,646

1,766

Karlsruhe Institute of

Testfacility CryoMaK – ATLAS

Example full size: ITER PF coil tail strain-cycling 4.2K or 77K

PF Winding Pack Mockup

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Testfacility CryoMaK – FBI facility

Dr. Klaus-Peter Weiss - ITEP

- ONH-Analysis
- H2-preloading (200bar, 77K-300K)

Testfacility CryoMaK

- Optical assessment
- Vickers Hardnesstest

Further Characterization at ITEP

- SEM Leo1530 (Zeiss) with EDX-System Noran SystemSix (Thermo Scientific) and EBSD-System Nordlys II (Oxford Instruments)
- XRD- D8-Discover(Bruker)

High Voltage Lab for small specimen up to components at RT or cryogenic temperatures

Outgassing rate measurements of stainless steel and polymer

Thank you for listening!

Dr. Klaus-Peter Weiss klaus.weiss@kit.edu

