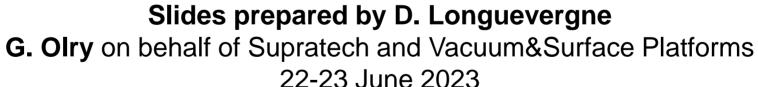
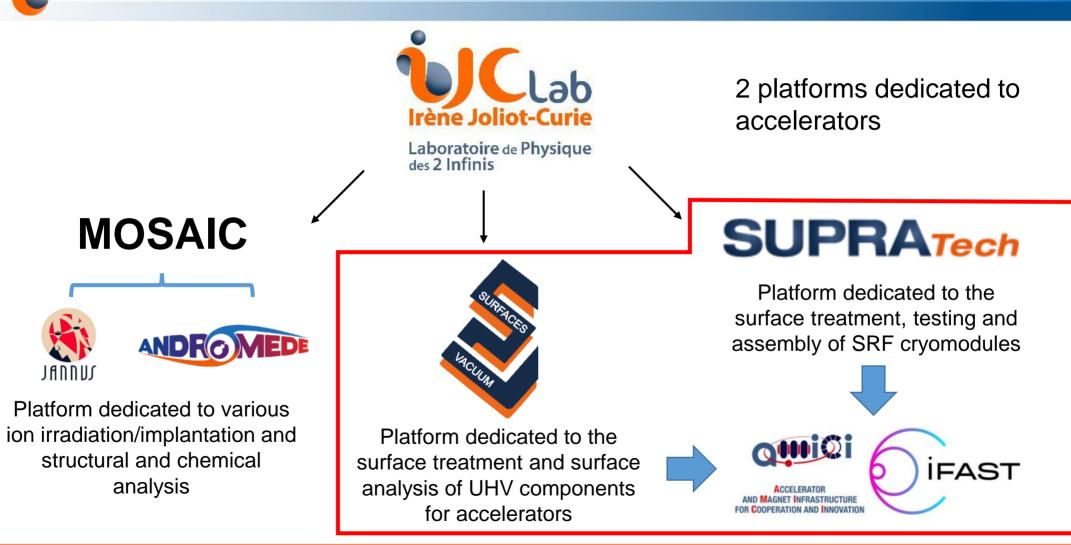


CNrs


Université de Paris

Platforms for characterization, treatments and test of materials at

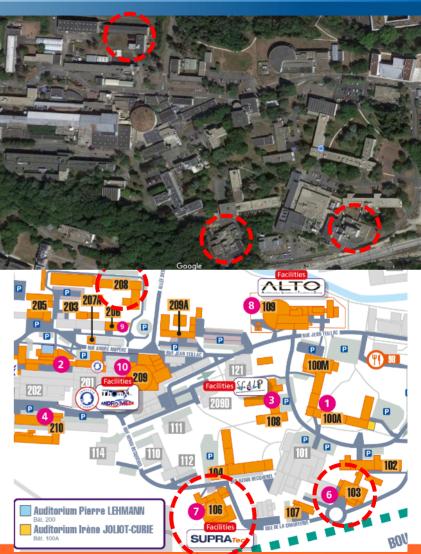


Platforms for material characterization at IJCLab

CNIS

universite Universite

General presentation of SUPRATECH



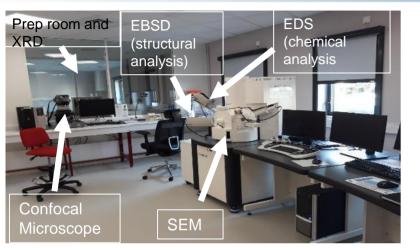
SUPRATECH :

- is the CNRS-IJCLab Technological platform dedicated to the development of superconducting RF technology for particle accelerators.
- provides the technical infrastructure to support R&D or construction projects and activities related to superconducting accelerators.
- is located in Orsay, in 3 buildings (103, 106 & 208) and represents a ~ 8 M€ total equipment investment
- Operation costs are covered by IJCLab, the Institute (IN2P3) and users (projects).
- is operated jointly by the SupraTech team (depending on lab direction), RF and cryogenic services (depending on accelerator department).

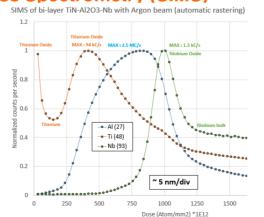
- 1. A chemical facility to perform Niobium etching (BCP)
- 2. Three ISO 4 clean rooms, various size, for final surface processing and clean assemblies of cavities, couplers and full cavity strings. (Including High Pressure Water Rinsing and baking capabilities)
- 3. A large high temperature vacuum furnace for Nb&Ti cavities (<1300°C and <1E-6 mbar)
- 4. A set of small to med-scale vertical cryostats to perform cryogenic characterization of material down to 1.7K (RRR, heat conductivity, Tc, ...).

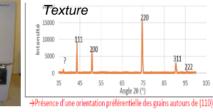
Vacuum & Surface :

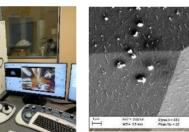
- is the CNRS-IJCLab Technological platform dedicated to material, surface and UHV analysis and studies.
- Equipment acquired in collaboration with CEA and financed by P2IO (Labex), Ile de France Region (Sesame), ANR (Equipex+).
- is located in Orsay, in 2 halls (420 m2) since 2022 :
 - 1 Hall hosting commercial equipment for material & surface characterization (SEM+EDS+EBSD, SIMS, XRD, XPS, confocal microscope)
 - 1 Hall hosting dedicated test bench and surface treatment (NEG deposition, vacuum furnace, SEY, Outgassing Rate, Desorption energy, ...)
- Operation costs are covered by IJCLab, the Institute (IN2P3) and users (projects).
- is operated jointly by the Vacuum&Surface team and MAVERICS team (Materials for Accelerators, dynamic Vacuum studiEs and innovative Research on superconductIng CavitieS).



22/06/2023

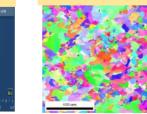

V&S commercial equipment for surface analysis


Secondary Ion Mass Spectrometry (SIMS)

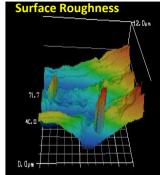


X-ray diffractometer

Surface Structure and



Scanning Electron Microscope


Structural (EBSD)

Case 11 May 2051 Tens: 12:34:23

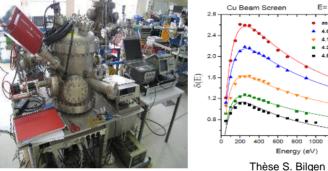
Confocal Microscope

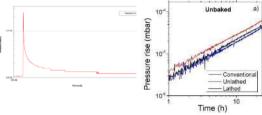
X-ray photoelectron spectroscopy (in Sep.

22/06/2023

AMICI - I-FAST WP13 - Workshop - IJCLab

Composition (EDS)




UHV analysis and studies

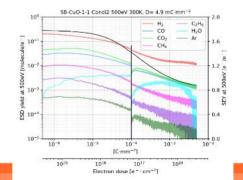
Secondary Electron Yield (SEY)

Outgassing rate

NEG coating chamber (Ti,Zr,V)

Heat treatment (H2)

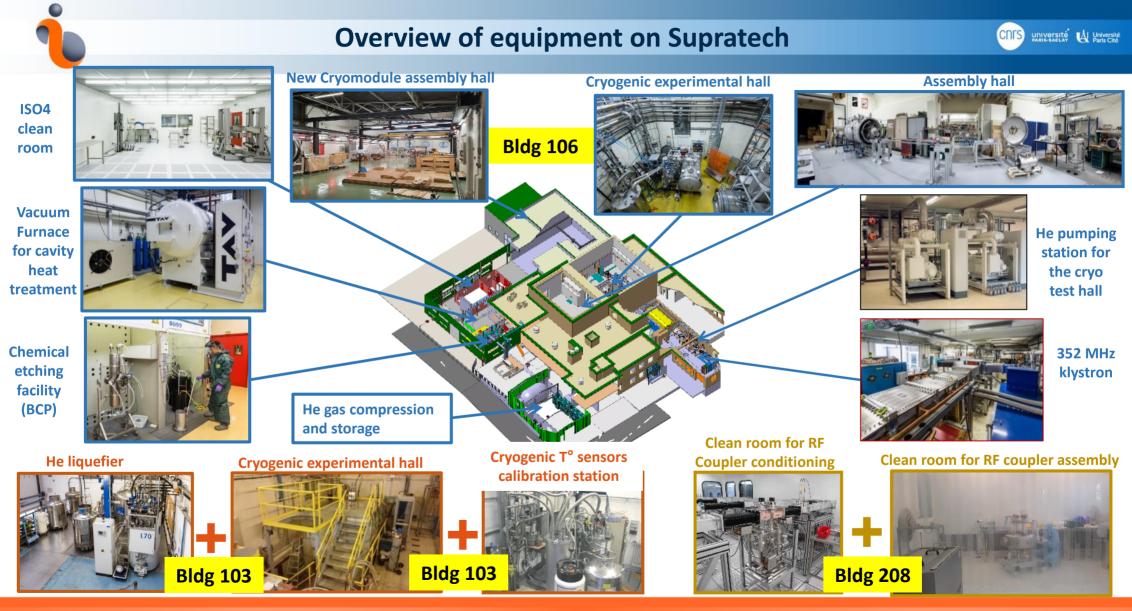
Molecular desorption energy


E= 500 eV 4.6x10⁻⁵ C/mm

4.1x10⁻⁴ C/mm² 4.2x10⁻³ C/mm² 4.8x10⁻² C/mm

Energy (eV)

Electron Stimulated Desorption



Thank you !

22/06/2023

Main projects (2022 -> mid-term)

• European Spallation Source (ESS) prototype phase and construction phase: main and top priority project since 2015 for the Platform (13+1 Cryomodules, 30 cavities, 30 power couplers, 28 tuners).

• MYRRHA :

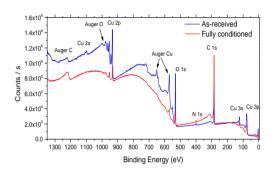
- prototyping phase ongoing (cavities, tuners, power coupler) up to the prototype cryomodule assembly and test
- Contribution to construction (MINERVA) :
 - pre-series cavity tests (2023)
 - Series power couplers preparation and conditioning (2023 2025)
 - Series tuner qualification @ 80 K
 - Discussion on-going for potential series cavity test (2023 2025)
- **PIP-II contribution**: prototyping phase (-> 2023) and series cavity tests (2024 2025)
- SRF R&D : Multipacting, Alternative Polishing of Niobium, Plasma processing, heat treatments (doping, mid-T baking), ...
- Cryogenic R&D (framework of the in2p3 NG Cryo project) : sub-kelvin refrigeration, cryogenic instrumentation and acquisition, low temperature thermometry, sub-kelvin material properties...

equipment under development on V&S platform

Plasma cleaning set-up

New equipment

f = 13.56 MHz H = 100 W


Multi-technical analysis set-up (recovery of an existing <u>set-up from I</u>CMMO Lab)

2023 SEY XPS LEED RGA ion gun @ RT / 1000 K Particle Accelerators Initiative for Future Innovative and Challenging Systems

XPS (sept. 2023)

<u>2024</u>

MAVERICS : Research topics

- Superconducting properties of surfaces (surface resistance and magnetic shielding of SRF cavities)
- Dynamic pressure
 - Stimulated desorption / Collective effects (electron clouds)
- Interactions between particles (electrons, photons, ions) and material surfaces (secondary electron emission, modification of surface chemistry)

Goal: Improve the performance of high energy particle accelerators

O BOLL HILL HARAN	SRF cavities		Beam lines / vacuum chambers		
	Increase accelerator gradients Reduce RF losses	Multipacting mitigation Limitation of pressu increases		Limitation of pressure increases	
Surface treatments	<u>Bulk niobium:</u> Thermal treatments (HELOISE / MP SRF) N doping / infusion (HELOISE/ MP SRF) Polishing (PACCAS/ MP SRF)	<u>All materials</u> : Heat treatments Surface conditioning Plasma cleaning		ntments Inditioning	Surface treatments
Thin layers	<u>Alternative Materials:</u> superconducting multilayers S-I-S (Project AXE SRF / MP SRF)	TiN, amorphous carbon, NEG alloys (Project MULTIPAC du MP SRF + CNRS 80PRIME Project Vacuum / MP NPC-FCC)			Thin layers

→ Analysis of material surfaces → Vacuum&Surfaces platform

- Participation in accelerator design / construction projects (MYRRHA, PIP2, PERLE)
- Participation in the Transverse Group FATI (metal additive manufacturing) / Project FABBAC