Impact of blending on weak lensing measurements with Rubin/LSST

Euclid Summer School, August 2023 Manon Ramel

Laboratoire de Physique Subatomique & Cosmologie Supervisors : Cyrille Doux, Marine Kuna

Scientific context Cosmology with galaxy clusters

Largest gravitationally bound structures in the Universe

- Size of 1 Mpc
- 50 to 1000 galaxies
- $M > 10^{13.5} M_{\odot}, z < 3$

Tracers of the matter over-densities

• Abundance depends on cosmology

Scientific context Cosmology with galaxy clusters

Largest gravitationally bound structures in the Universe

- Size of 1 Mpc
- 50 to 1000 galaxies
- $M > 10^{13.5} M_{\odot}, z < 3$

Tracers of the matter over-densities

• Abundance depends on cosmology

Studied through their counting per bins of mass and redshift

2 /19

- Excess surface mass density (in M_{\odot} . Mpc^{-2})

- Excess surface mass density (in M_{\odot} . Mpc^{-2})

- Excess surface mass density (in M_{\odot} . Mpc^{-2})

Fit of $\Delta\Sigma$ = Estimate of galaxy clusters masses

Scientific context Vera C. Rubin - LSST

Vera C. Rubin Observatory

- World's largest camera (3 billions pixels)
- 8-diameter primary mirror
- 0.2 arcseconds per pixel

Legacy Survey of Space and Time - LSST

- **Optical** and **deep** sky survey over 10 years
- Footprint of 18,000 deg^2
- First scientific data in 2025

DES 0.5 billion redshift ≤ 1.5 magnitude ≤ 23

LSST 10 billions of galaxies redshift ≤ 3 magnitude ≤ 27

International scientific collaboration **DESC**

• ~ 1000 members, 20 countries

Superposition of galaxies on the images due to:

- The number of observed galaxies
- the depth of observation
- the survey's resolution/PSF

1. Number of galaxies

Euclid Summer School. 2023Manon Ramel

1. Number of galaxies

1. Number of galaxies

1. Number of galaxies

1. Number of galaxies

1. Number of galaxies

2. Depth of observation

Less resolution

2D image

Recognized blends Hubble/ACS

2D image

2D image

Less resolution **Recognized blends**

Unrecognized blends Subaru/HSC

2D image

Less resolution **Recognized blends** Hubble/ACS

Unrecognized blends Subaru/HSC

LSST deblender: **SCARLET** Source separation in multi-band images

Imperfect deblending

2D image

Less resolution Recognized blends Hubble/ACS

Unrecognized blends Subaru/HSC

* 2016, Dawson et al. 2022, Troxel et al.

LSST deblender: **SCARLET** Source separation in multi-band images

Scientific context Blending around galaxy clusters

Galaxy clusters = high density regions = **blending**

OUTSIDE

INSIDE

High amount of blending near clusters centres

Scientific context Blending around galaxy clusters

Galaxy clusters = high density regions = **blending**

OUTSIDE

Blending impacts the **detection** of galaxies and the measurement of galaxy **shapes**

Euclid Summer School. 2023 Manon Ramel

INSIDE

High amount of blending near clusters centres

Blending will impact future Rubin/LSST weak lensing data induced by massive clusters

Tools and pre-work

Tools and pre-work Simulated catalogs

Millennium 2005, Springel et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for galaxies and dark matter haloes
- mag < 30, z = 3

Tools and pre-work Simulated catalogs

Millennium 2005, Springel et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for **galaxies** and dark matter haloes
- mag < 30, z = 3

mag_i	ra	el	(
24.541830	58.200397	-0.141020	-35.7022
26.177008	58.179060	0.173040	-35.702
24.806880	58.100637	0.138385	-35.702
25.014057	58.190685	-0.148557	-35.701
25.883955	58.151774	-0.505306	-35.701
26.582999	56.529076	-0.210661	-34.322
27.233892	56.628691	-0.630063	-34.278

DESC simulated image

DC2object = **object** catalog

- Simulated images from cosmoDC2
- Detection of **objects**
- Measured positions, magnitudes (< 28), shapes...

Identification of blends through catalog matching

 $\Delta \Sigma(R, z_l) = \langle \Sigma_{crit}(z_{gal}, z_l) \ \epsilon_{+}^{obs} \rangle$

HSM ellipticities calibration

 $\Delta \Sigma(R, z_l) = \langle \Sigma_{crit}(z_{gal}, z_l) | \epsilon_+^{obs} \rangle$

 $e_{HSM} = 0.85 \times e_{truth} - 0.003$

HSM ellipticities calibration

 $\Delta \Sigma(R, z_l) = \langle \Sigma_{crit}(z_{gal}, z_l) \epsilon_{+}^{obs} \rangle$

Photometric redshifts

HSM ellipticities calibration

Individual errors that we can calibrate \rightarrow sufficient for blending?

 $\Delta \Sigma(R, z_l) = \langle \Sigma_{crit}(z_{gal}, z_l) \ \epsilon_{+}^{obs}$

Photometric redshifts

12/19

Detection of blends in DC2

Euclid Summer School. 2023Manon Ramel

Detection of blends in DC2 Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Detection of blends in DC2 Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Euclid Summer School. 2023Manon Ramel

Friends-of-Friends = **distances** information

https://github.com/LSSTDESC/friendly

Friends-of-Friends = **distances** information

https://github.com/LSSTDESC/friendly

Overlap test = **shapes** information

15/19

Friends-of-Friends = **distances** information

https://github.com/LSSTDESC/friendly

Overlap test = **shapes** information

Friendly = more robust matching algorithm

15/19

Friendly group

https://github.com/LSSTDESC/friendly

NetworkX graph

Friendly group

https://github.com/LSSTDESC/friendly

NetworkX graph

Friendly group

https://github.com/LSSTDESC/friendly

NetworkX graph

Next steps: Add metrics on the nodes/edges

- Absolute overlap fraction
- Purity
- Magnitudes/colors
- ...

https://github.com/LSSTDESC/friendly

Friendly = useful graph structure to better define the (un)recognized blends

16/19

Impact of blending on $\Delta\Sigma$ profiles

Euclid Summer School. 2023 Manon Ramel

Objective: study the impact of (un)recognized blends on $\Delta\Sigma$ profiles

Euclid Summer School. 2023 Manon Ramel % of unrecognized blended sources: ~9 % % of recognized blended sources: ~30 %

Objective: study the impact of (un)recognized blends on $\Delta\Sigma$ profiles

Euclid Summer School. 2023 Manon Ramel % of unrecognized blended sources: ~9 % % of recognized blended sources: ~30 %

Objective: study the impact of (un)recognized blends on $\Delta\Sigma$ profiles

Euclid Summer School. 2023 Manon Ramel % of unrecognized blended sources: ~9 % % of recognized blended sources: ~30 %

Objective: study the impact of (un)recognized blends on $\Delta\Sigma$ profiles

Euclid Summer School. 2023 Manon Ramel % of unrecognized blended sources: ~9 % % of recognized blended sources: ~30 %

$$\Delta \Sigma(R, z_l) = \langle \Sigma_{crit}(z_{gal}, z_l) \epsilon_+^o \rangle$$

Objects (simulated observations)

Objects without recognized blends (my work)

Objective: study the impact of (un)recognized blends on $\Delta\Sigma$ profiles

Euclid Summer School. 2023 Manon Ramel % of unrecognized blended sources: ~9 % % of recognized blended sources: ~30 %

$$\Delta \Sigma(R, z_l) = \langle \Sigma_{crit}(z_{gal}, z_l) \epsilon_+^{o}$$

- Remove blends **shift** the profile upwards by **20%**

Conclusion and perspectives

Development of friendly = new blending matching algorithm

Impact of blending on $\Delta \Sigma \text{ profiles}$

Better definition of (un)recognized blends

Impact on galaxy clusters mass estimates and on cosmology

Conclusion and perspectives

Development of friendly = new blending matching algorithm

Impact of blending on $\Delta\Sigma$ profiles

Better definition of (un)recognized blends

Impact on galaxy clusters mass estimates and on cosmology

Thank you for your attention !

19/19

Back-up

Back-up Rubin-LSST

Back-up Point Spread Function (PSF)

E. Nourbakhsh et. al

Back-up Choice of the linking length

Back-up Distribution of the blendedness

Back-up HSM calibration

Back-up Ellipses definition

cosmoDC2

- Positions x_0, y_0
- Minor/Major axis *a* and *b*
- Position angle θ
- Convolution with the PSF

26/19

Back-up Ellipticity overlap test

https://github.com/LSSTDESC/Cluster_Blending/blob/main/match_ellipse_dc2.ipynb

2017, Alberich-Carramiña

Functions of a, b, θ, x_0, y_0

Overlap of 2 ellipses ?

- True
- False

27/19

na	et	<u>al</u> .

Back-up Absolute overlap fraction

https://github.com/LSSTDESC/Cluster_Blending/blob/main/overlap_purity.ipynb

	_	_
es	et	al.

Back-up Purity

Purity of an object = the degree to which it overlaps with other sources

If ellipses 1 and 2 overlap, the purity of ellipse 1 is given as:

- Purity of 0: Completely blended source
- Purity of 1: Isolated source

Back-up Unrecognized blends and $\Delta\Sigma$ profiles

30/19

