

Established by the European Commission

Looking into the heart of darkness: dark matter searches with future noble liquid experiments

Laura Baudis, University of Zurich, June 7, 2023

Dark matter is all around us

 We look for (very rare) scatters of DM particle in detectors operated deep underground

Allowed mass parameter space

Kinematics

Allowed mass parameter space

Direct detection landscape in 2023

Direct detection landscape in 2023

Snowmass, Cosmic Frontier Report, arXiv: 2211.09978

Liquid Noble Technology

- Leading sensitivity at intermediate/high DM masses since ~2007
- Liquid detectors
 - \bullet scalable \Rightarrow large target masses
 - e readily purified ⇒ ultra-low backgrounds
 - high density \Rightarrow self-shielding
- SI and SD (¹²⁹Xe, ¹³¹Xe) interactions
- Many other science opportunities (double weak decays, solar and SN neutrinos, etc)

Energy Deposits in Noble Liquids

(not detectable in LAr and LXe)

Electronic and nuclear recoils

Detector Types

Single phase, light readout

- High light yields, simple geometry, no E-fields
- Scintillation with PMTs
- LAr: DEAP-3600
- LXe: XMASS (until 2019)

Two-phase TPC with light readout

- Light and charge with PMTs
- 3D position resolution, improved energy resolution, discrimination based on S2/S1
- LAr: DarkSide-50 (until 2019)
- LXe: LZ, PandaX-4T, XENONnT

Superfluid ⁴He, phonon readout

- R&D phase for light DM
- Signals: phonons and rotons; detect excitations down to ~ 1 meV (via ejection of ⁴He atom), TES/MMC readout
- HeRALD, DELight, etc 12

Liquid Argon Detectors

- DEAP-3600 at SNOLAB: 3300kg LAr (1 t fiducial), 255 PMTs
 - Data taking since 2016
 - Detector upgrades in progress
- DarkSide-50 at LNGS: 50 kg LAr, depleted in ³⁹Ar (33 kg fiducial), 38 PMTs
 See talk by T. Hessel
 - Data taking: 2013-2019
 - New constraints on light DM: S2-only analysis (0.6 keV_{nr} threshold \equiv 4 e⁻)

Liquid Argon Detectors

- DEAP-3600 at SNOLAB: 3300kg LAr (1 t fiducial), 255 PMTs
 - Data taking since 2016
 - Detector upgrades in progress
- DarkSide-50 at LNGS: 50 kg LAr, depleted in ³⁹Ar (33 kg fiducial), 38 PMTs
 See talk by T. Hessel
 - Data taking: 2013-2019
 - New constraints on light DM: S2-only analysis (0.6 keV_{nr} threshold \equiv 4 e⁻)

DEAP-3600, PRD 100

DarkSide-50, PRL 130 (2023) 10

Future Liquid Argon Detectors

- Global Argon Dark Matter
 Collaboration See talk by T. Hessel
 - DarkSide-20k: 51.1 t underground LAr (20 t fiducial volume) in octagonal TPC with SiPM arrays
 - Cryostat currently under construction in Hall C at LNGS
 - First data expected in 2025
 - ARGO: 400 t LAr (300 t fiducial), likely at SNOLAB

DarkSide-20k

Underground argon, DarkSide-50, PRD 93, 2016

Future Liquid Argon Detectors

- Global Argon Dark Matter
 Collaboration See talk by T. Hessel
 - DarkSide-20k: 51.1 t underground LAr (20 t fiducial volume) in octagonal TPC with SiPM arrays
 - Cryostat currently under construction in Hall C at LNGS
 - First data expected in 2025
 - ARGO: 400 t LAr (300 t fiducial), likely at SNOLAB

Liquid xenon detectors

- LZ at SURF, PandaX-4T at JinPing, XENONnT at LNGS
- Detector scales: 10 t (LZ), 6 t (PandaX-4T) and 8.6 t
 LXe (XENONnT) in total xenon mass
 - TPCs with 2 arrays of 3-inch PMTs
 - Kr and Rn removal techniques
 - Ultra-pure water shields, n & μ vetos
 - External and internal calibration sources
- Status: PandaX-4T first result in 2021 from commissioning run, LZ first results from run in 2022, XENONnT first results from SR0 in 2021/22

LUX-ZEPLIN

See talk by P. Brás

XENONnT

See talk by Y. Tao

Future Liquid Xenon Detectors

• DARWIN/XLZD See talk by R. Budnik

- DARWIN: 50 t LXe (40 t active target) at LNGS; ~1900 3-inch PMTs (baseline design); Gd-doped water n and µ vetoes
- R&D and prototyping in progress
- XLZD: 75 t LXe (60 t active target), several labs are considered
 See talk by A. Lindote
- PandaX-xT: > 30 t active volume at JinPing; 2 arrays of 2-inch PMTs

See talk by Y. Tao

The XLZD Consortium

- Merger of DARWIN/XENON and LUX-ZEPLIN collaborations to build and operate nextgeneration liquid xenon detector
 - new, stronger international collaboration with demonstrated experience in xenon time projection chambers

Paving the way now

- First joint, successful DARWIN/XENON & LZ workshop, April 26-27 2021 https:// indico.cern.ch/event/1028794/
- MoU signed July 6, 2021 by 104 research group leaders from 16 countries
- Summer meeting at KIT June 2022; spring meeting at UCLA April 2023; several working groups in place to study science, detector, Xe procurement, R&D etc
- XLZD consortium (xlzd.org) to design and build a common multi-ton xenon experiment

DM cross section versus time

Snowmass, Topical Group on Particle Dark Matter Report, arXiv: 2209.07426

Size matters

 LUX-ZEPLIN and XENONnT: 1.5 m e⁻ drift and ~ 1.5 m diameter electrodes

• DARWIN/XLZD: 2.6 - 3.0 m \Rightarrow new challenges

- Design of electrodes: robustness (minimal sagging/ deflection), maximal transparency, reduced e⁻ emission
- Electric field: ensure spatial and temporal homogeneity, avoid charge-up of PTFE reflectors
- High-voltage supply to cathode design, avoid highfield regions
- Liquid level control
- Cryogenic purification (²²²Rn and ⁸⁵Kr below solar pp neutrino level) See talk by C. Weinheimer
- Electron survival in LXe: > 10 ms lifetime
- Diffusion of the e⁻-cloud: size of S2-signals

Large-scale demonstrators

• Full scale demonstrators in *z* and in *x*-*y*, supported by ERC grants

- Xenoscope, 2.6 m tall TPC and Pancake, 2.6 m ø TPC in double-walled cryostats
- Both facilities available to the collaboration/consortium for R&D purposes
- LowRad to demonstrate large-scale cryogenic distillation at Münster

Vertical demonstrator: *Xenoscope*

Horizontal demonstrator: Pancake

L. Baudis et al, JINST 16, P08052, 2021

Xenoscope first results & status

• Xe purity monitor (53 cm tall) with charge readout

• Run: 88 d with 343 kg LXe, three different Xe flow regimes

Xenoscope first results & status

Measured drift velocity and longitudinal diffusion at drift fields from 25 - 75 V/cm

NEST prediction before our data

Xenoscope first results & status

• Full-scale (2.6 m tall) TPC assembled and installed

- Top SiPM array with 48 VUV4 Hamamatsu MPPCs (arranged in 12 tiles) with LED + fibres calibration system; tested in vacuum (and previously at low-T)
- Added also: long & short level meters, weir, HV system
- Ready to start first xenon run in June 2023

2.6 m tall TPC during installation: Cu rings, torlon pillars

Future detectors: multipurpose observatories for rare events

Definitive search for medium to high-mass WIMPs

Larger LXe mass with XLZD

- reaches sooner the systematic limit of the neutrino fog (~ 1000 tonnes × years exposure)
- allows for 3-σ discovery at SI cross section of 3 × 10⁻⁴⁹ cm² at 40 GeV mass
- Detector design: combine best of LZ and XENONnT

Figure by Ciaran O'Hare

Systematic limit imposed by CEvES from atmospheric neutrinos

At contour n: obtaining a 10 times lower cross section sensitivity requires an increase in exposure of at least 10ⁿ

27

Ar and Xe DM complementarity

• Different DM targets are sensitive to different directions in the m_{χ} - σ_{SI} plane

Xe: 2.0 t x yr, $E_{th} = 10 \text{ keV}_{nr}$ Ge: 2.2 t x yr, $E_{th} = 10 \text{ keV}_{nr}$ Ar: 6.4 t x yr, $E_{th} = 30 \text{ keV}_{nr}$

fixed galactic model

including galactic uncertainties

Pato, Baudis, Bertone, Ruiz de Austri, Strigari, Trotta: Phys. Rev. D 83, 2011

WIMP spectroscopy

 Capability (in LXe) to reconstruct the WIMP mass and cross section for various masses - here 20, 100, 500 GeV/c²⁻ and cross sections

1 and 2 sigma credible regions after marginalising the posterior probability distribution over: $v_{esc} = 544 \pm 40 \,\mathrm{km/s}$

 $v_0 = 220 \pm 20 \,\mathrm{km/s}$ 29 $ho_{\chi} = 0.3 \pm 0.1 \,\mathrm{GeV/cm}^3$ Newstead et al., PRD D 88, 076011 (2013)

Superfluid He detectors

- Calorimeters with TES or MMC readout, operated at ~ 20-50 mK
- TES/MMC in liquid: UV photons, triplet molecules and IR photons
- TES/MMC in vacuum: detect in addition ⁴He atoms evaporated by quasiparticles

HeRALD: Si pixel arrays at LBL Under assembly, 11 g active ⁴He

HeRALD: PRD 100, 2019

Summary and Outlook

• The nature of dark matter in our universe remains an enigma

- In the worldwide race to directly detect dark matter particles, liquid noble detectors remain at the forefront
- LAr, LXe: highest sensitivity for medium-heavy WIMPs; superfluid He: light DM (< 100 MeV) sensitivity
- In general, to probe the experimentally accessible parameter space until the neutrino fog, larger detector masses with lower backgrounds are needed
- Current generation of detectors presented first results, and they continue to take data
- Next-generation LAr detector (DarkSide-20k) under construction; R&D and design of next-generation LXe detector (DARWIN/XLZD) is ongoing; superfluid ⁴He detectors in developments
- Eventually, direct detection experiments will limited by neutrino interactions (but also new physics opportunities & be prepared for surprises!)

The end

Backup slides

Example: Core-collapse SN via CEvNS

34

JCAP 03 (2021) 043)

 \odot SN with $27\,M_{\odot}$ at 10 kpc

• 27 events/t in LXe

• 7 events/t in LAr

Discrimination in LAr TPCs

Fprompt

- NRs: predominantly excite the singlet state of LAr, with larger relative amplitudes compared to ERs
- ERs: the low density of e-ion pairs results in less recombination, thus more free electrons, compared with NRs of the same S1
- f₉₀: defined as the integral over the S1 pulse in the first 90 ns over the pulse in 7 µs
- typically f₉₀ is 0.7 for NRs and 0.3 for ERs

The purity monitor: signal readout

1: 18 mm, 2: 503 mm, 3: 10 mm

Xenoscope purity monitor: elifetime determination

• Waveforms: acquired by oscilloscope and ADC

- Charges: integrals of the current pulses
- The e-lifetime (with $\Delta t = t_2$, rise times t_1 , t_3)*

$$\tau_e \approx \frac{1}{\ln(Q_A/Q_C)} \left(t_2 + \frac{t_1 + t_3}{2} \right)$$

^{*}L. Manenti et al., JINST 15, 2020

Drift velocity

- Measured for drift fields between 25 - 75 V/cm
- Compared to NEST predictions and literature values

$$v_d = \frac{d_2 + d_3}{t_2 + t_3}$$

μ

 The drift velocity is related to the mobility μ:

 $v_d = \mu E_d$

 which can be approximated for two regimes: Cold electrons

$$\mu = \frac{2}{3} \frac{e\lambda}{v} \left(\frac{2}{\pi m_e k_B T}\right)^{\frac{1}{2}}$$

Hot electrons

38

$$=\frac{4}{3}\frac{e\lambda}{v}\frac{1}{\sqrt{\pi}m_e^*}$$

Longitudinal diffusion

• The diffusion coefficient is related to the electron mobility

 $\epsilon_k = \frac{eD_L}{\mu}$ • via a characteristic energy ϵ_k

Cold electrons: $\epsilon_k \approx 0.02 \,\text{eV}$, $\mu \approx 0.29 \,\text{mm}^2/(\mu \text{s} \cdot \text{V})$

Hot electrons $\epsilon_k \approx 0.1 \,\mathrm{eV}$, $\mu \approx 0.01 \,\mathrm{mm^2/(\mu s \cdot V)}$ (???)

Theory predictions

• SI scattering cross sections for various "visible sector" models

Neutrinos in a DARWIN-like detector

Study of sensitivity to atmospheric neutrinos (using NEST to model the signals)

• Below: exposure of 200 t y; need 700 t y to obtain a 5- σ detection of atmospheric neutrinos

Neutrino backgrounds

Effect of the astrophysical neutrino backgrounds: gradual, hence the "neutrino fog"

Here the neutrino fog for a xenon target: blue contour map

At contour n: obtaining a 10 times lower cross section sensitivity requires an increase in exposure of at least 10ⁿ

 $n = gradient of a hypothetical experiment's median cross section for 3\sigma discovery with respect to the exposure$