

Top LHC France 2023

Testing BSM theories against cross section measurements

M. M. AlTakach, J.M. Butterworth, T. Jezo, M. Klasen, I. Schienbein [SciPost Phys. Core 6, 014 (2023)] Probing a leptophobic top-colour model with cross section measurements and precise signal and background predictions: A case study

17 May 2023

Plan of the presentation

• Introduction

- Motivation
- Rivet
- Contur

• Calculations of signal and background

- Signal
- Background
- Sensitivity
 - 1st Approach
 - 2nd Approach
 - Measurements vs searches
- Summary & Conclusions

Part I

Introduction

• LHC: test the SM & search for new physics (NP).

• LHC: test the SM & search for new physics (NP).

 Hundreds of measurements & searches.

• Many theory ideas where tested.

- LHC: test the SM & search for new physics (NP).
- No **NP** so far.

 Hundreds of measurements & searches.

• Many theory ideas where tested.

- LHC: test the SM & search for new physics (NP).
- No NP so far.

- Hundreds of measurements & searches.
- New approaches needed.

- Many theory ideas where tested.
- Precision calculation: SM background & NP signals.

- LHC: test the SM & search for new physics (NP).
- No NP so far.

- Hundreds of measurements & searches.
- New approaches needed.

- Many theory ideas where tested.
- **Precision calculation SM** background & **NP** signals.

Rivet

- Robust Independent Validation of Experiment and Theory
 - Preservation of particle-collider analyses logic
 - Tuning of non perturbative parameters
 - Validation and improvement of MCEG codes
 - Analysis reinterpretation via MC simulations

Rivet

- Robust Independent Validation of Experiment and Theory
 - Preservation of particle-collider analyses logic
 - Tuning of non perturbative parameters
 - Validation and improvement of MCEG codes
 - Analysis reinterpretation via MC simulations

Rivet

- Robust Independent Validation of Experiment and Theory
 - Preservation of particle-collider analyses logic
 - Tuning of non perturbative parameters
 - Validation and improvement of MCEG codes
 - Analysis reinterpretation via MC simulations

Contur uses bank of **LHC** results preserved in **Rivet** to rapidly check if new models are already ruled out

- At what significance do existing measurements exclude the **BSM** idea?
- **Two approaches** can be used in order to calculate the exclusion limits.

At what significance do existing

a

Z'

At what significance do existing

calculate the exclusion limits.

measurements exclude the **BSM** idea?

Two approaches can be used in order to

Particle-level leading top transverse momentum **2nd Approach:** $d\sigma/dp_{T}^{t,1}$ [pb GeV⁻¹] Data PowhegBoxZpWp 10 **Condition:** [1] 0.62 • **SM** predictions. 10 **Method**: 10⁻⁵ Assume background = **SM** Add signal on top of 30 background. $\mathbf{2}\sigma$ (Bkgd+BSM)/Data 1 σ • Check for consistency $o\sigma$ with the data within -1 O uncertainties. -2 O -3*σ* 500 600 700 900 $1.0 \cdot 10^{3}$ 1.1.103 1.2

a

Z'

 $p_{\rm T}^{t,1}$ [GeV]

At what significance do existing

measurements exclude the **BSM** idea?

Contur provides the book-keeping and steering machinery to repeat this process over a grid of parameter values.

 $p_{\mathrm{T}}^{t,1}$ [GeV]

Mohammad Mahdi Altakach

Z'

Contur: before vs now

Before this project

- **Contur** was only used in **default mode**.
- 2nd Approach necessitate SM theoretical predictions.
- LO signals.

For this project

- 14 NLO SM predictions using multiple POWHEG BOX packages including PBZpWp.
- NLO signal using PBZpWp.
- Interfaced the different tools.
- Tested a leptophobic **top**-colour model against the **LHC measurement**.

Part II

Calculations of signal and background

The Leptophobic Top-colour model (TC) [arXiv:1112.4928]:

- New strong dynamics with SU(3)₂ symmetry coupling preferentially to the third generation while the original SU(3)₁ gauge group couples only to the 1st and 2nd generation; breaking SU(3)₁xSU(3)₂ → SU(3)_C
- To block the formation of a bottom quark condensate an additional $U(1)_2$ symmetry with associated Z' is introduced; $U(1)_1 \times U(1)_2 \rightarrow U(1)_Y$
- Z' couples only to 1st and 3rd generation
- Input parameters:
 - The mass of $Z': M_{Z'}$
 - The Ratio of the two U(1) coupling constants: cot $\theta_{\rm H}$

Signal

•
$$\Gamma_{Z'} = rac{lpha \cot^2 heta_H M_{Z'}}{8 \cos^2 heta_W} \left[\sqrt{1 - rac{4M_t^2}{M_{Z'}^2}} \left(2 + rac{4M_t^2}{M_{Z'}^2}
ight) + 4
ight]$$

- Input parameters $(M_{Z'}, \cot \theta_H) \iff (M_{Z'}, \Gamma_{Z'}/M_{Z'})$
- LO:
 - 2 → 2 processes, with Z' either in s-channel or as an external outgoing leg
 - Herwig for event generation, decay of the top, and showering
- NLO:
 - $pp \rightarrow Z' \rightarrow t\overline{t}$
 - Events using **PBZpWp** with stable on-shell **top** quark
 - **Pythia** 8.2 to decay the **top** quark and to shower the events
 - **PDF**: LUXqed NNPDF (324900)

The partonic **top-quark** pair production cross section at **NLO**:

$$egin{split} \sigma_{ab}(\mu_r) &= \sigma_{1;1}(lpha_Slpha) + \sigma_{2;0}(lpha_S^2) + \sigma_{0;2}(lpha^2) + \sigma_{3;0}(lpha_S^3) \ &+ \sigma_{2;1}(lpha_S^2lpha) + \sigma_{1;2}(lpha_Slpha^2) + \sigma_{0;3}(lpha^3) \end{split}$$

- **σ**_{2;0}: **SM QCD**
- $\sigma_{3;0}$: NLO QCD corrections to the SM QCD
- $\sigma_{2;1}$: EW corrections to the SM QCD
- $\sigma_{1;1}$: Interference between QCD & EW top quark pair production
- $\sigma_{0;2}$: EW top quark pair production
- $\sigma_{1;2}$: NLO QCD corrections to EW top quark pair production
- $\sigma_{0;3}$: EW corrections to EW top quark pair production

Background

The partonic **top-quark** pair production cross section at **NLO**:

$$egin{aligned} &\sigma_{ab}(\mu_r) = &\sigma_{1;1}(lpha_S lpha) + &\sigma_{2;0}(lpha_S^2) + &\sigma_{0;2}(lpha^2) + &\sigma_{3;0}(lpha_S^3) \ &+ &\sigma_{2;1}(lpha_S^2 lpha) + &\sigma_{1;2}(lpha_S lpha^2) + &\sigma_{0;3}(lpha^3) \end{aligned}$$

hvq

• **σ**_{2;0}: **SM QCD**

- $\sigma_{3;0}$: NLO QCD corrections to the SM QCD [arXiv:0707.3088]
- $\sigma_{2;1}$: EW corrections to the SM QCD
- $\sigma_{1;1}$: Interference between QCD & EW top quark pair production
- $\sigma_{0;2}$: **EW top** quark pair production
- $\sigma_{1;2}$: NLO QCD corrections to EW top quark pair production
- $\sigma_{0;3}$: EW corrections to EW top quark pair production

arXiv:2012.14855

PBZpV

Background

- Event sample of QCD corrections to top pair production up to NNLO:
 - **ttJ_MiNNLO** [arXiv:2012.14267]
 - **σ**4;0
 - Only 13 TeV
- **ATLAS** inclusive jet and dijet cross section measurement [arXiv:1711.02692]:
 - **dijet** [arXiv:1012.3380]
 - σ3;0

Part III

Sensitivity

1st Approach

Mohammad Mahdi Altakach

Measurements vs searches

Excluded $M_{Z'}$ [Tev]									
$\Gamma_{Z'}/M_{Z'} [\%]$	Data as bgd.	NLO as bgd.	NNLO as bgd.	CMS [1810.05905]					
1	2.29	2.35	2.50	3.80					
10	3.17	3.22	3.55	5.25					
30	4.01	4.04	4.53	6.65					
50	4.54	4.61	5.19	-					

- Our limits are weaker than the direct searches:
 - No measurements using the full Run 2 luminosity were yet available in **Rivet**
 - Binning in **measurements** vs binning in **searches**

Part IV

Summary & Conclusions

Summary & Conclusions

- An analysis using **Contur** different modes
- We validated the **Contur** previous approach (Data = SM)
- First use of higher order results for both signal and background
- This analysis illustrated both strengths and weakness of a Contur like approach:
 - In this study we studied a model with a single, clear signature for which several searches already exist
 - In this case **Contur** exclusions are not found to be competitive
 - Derive exclusions limits in a previously unexplored regions of the parameter space
 - Wide range of **BSM** models can be rapidly checked
 - Even more interesting for models with a greater number of free parameters and more complex phenomenology

Backup slides

Measurements vs searches

Contur Category	\mathcal{L} [fb ⁻¹]	Rivet/Inspire ID	Highest SM Order	Rivet description	Category	\mathcal{L} [fb ⁻¹]	decay channels
ATLAS 8 LMETJET	20.3	ATLAS_2015_I1397637 [44]	NLO	Boosted $t\bar{t}$ differential	CMS 13	35.9	Leptonic and hadronic decays of the top
ATTLAC OF METHET	00.2	ATTLAC OOSE THOUGH [45]	MIO	cross-section	ATLAS 13	139	Fully hadronic decay channel only
AILAS 8 LMEIJEI	20.3	A1LA5_2015_11404878 [45]	NLO	cross sections at 8 TeV	ATLAS 13	36.1	Fully hadronic decay mode
CMS 8 LMETJET	19.7	CMS_2017_I1518399 [46]	NLO	Differential $t\bar{t}$ cross-	ATLAS 13	36.1	Semileptonic decay mode
				section as a function of			
				the leading jet mass for			
				boosted top quarks at 8 ToV			
ATLAS 13 LMETJET	3.2	ATLAS 2017 11614149 [50]	NNLO	Resolved and boosted tt.			
10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.2	11111012011111011110 [00]		1+iets cross sections at			
				13 TeV			
ATLAS 13 LMETJET	3.2	ATLAS_2018_I1656578 [51]	NNLO	Differential $t\bar{t}$ 1+jets			
				cross-sections at $13~{\rm TeV}$			
ATLAS 13 LMETJET	36	ATLAS_2019_I1750330 [49]	NNLO	Semileptonic $t\bar{t}$ at 13			
				TeV			
CMS 13 LMETJET	2.3	CMS_2016_I1491950 [54]	NNLO	Differential tt cross sec-			
				tions using the lep-			
				ton+jets final state in			
CMC 19 INDED INT	25.0	CIME 2010 December [52]	NNLO	pp collisions at 13 TeV			
CMS 13 LMEIJET	35.9	CMS_2018_11662081 [52]	NNLO	tions as a function of			
				kinematic event vari-			
				ables in <i>pp</i> collisions at			
				13 TeV			
CMS 13 LMETJET	35.8	CMS_2018_I1663958 [43]	NNLO	$t\bar{t}$ lepton+jets 13 TeV			
ATLAS 13 L1L2METJET	36.1	ATLAS_2019_I1759875 [48]	NNLO	Dileptonic $t\bar{t}$ at 13 TeV			
ATLAS 13 TTHAD	36.1	ATLAS_2018_I1646686 [53]	NNLO	All-hadronic boosted $t\bar{t}$			
				at 13 TeV			
CMS 13 TTHAD	35.9	CMS_2019_I1764472 [47]	NNLO	Differential $t\bar{t}$ cross sec-			
				tion as a function of			
				the jet mass and top			
				quark mass in boosted			
				hadronic top quark de-			
ATT AS 19 IETS	2.0	ATT AC 9010 11094070 [FE]	NLO	ATTAS inclusion int			
AILAS 15 JE15	3.2	ATLA5.2016.11034970 [55]	NLO	and dijet cross section			
				measurement at 13 TeV			
L				motor chiefe av 10 101			