

ttW measurement as a step towards ttH in the multilepton channel

Vera MAIBORODA, PhD at CEA Saclay

Top LHC France 2023 - IPHC Strasbourg

ttH: motivation

- Top Yukawa coupling is the only coupling with the magnitude of order one in the Standard Model → idea about the scale of New Physics
- ttH/tH production cross-section measurement is the only direct way to measure y_t
- ttH production also allows to probe the CP structure of the top-Higgs coupling

ttH in multilepton: motivation

- Production of ttH accounts for about 1% of the total rate
- Covering as many decay channels as possible: $t\bar{t}H(\gamma\gamma)$, $t\bar{t}H(bb)$, $t\bar{t}H(4\ell)$, $t\bar{t}H(ML)$
- ttH in multilepton final state: clean final state with leptons, moderate irreducible background

• Highest sensitivity : 2ℓ same-sign (SS) and 3ℓ

ttH in multilepton: current state

- tTH observation by <u>ATLAS</u> and <u>CMS</u> in 2018 with partial Run 2 datasets
- tTH in multilepton by <u>ATLAS</u> (80 fb⁻¹) and <u>CMS</u> (137 fb⁻¹)

ttH and ttW in multilepton

- ttW mismodelling observed in ttH <u>ATLAS</u> analysis, and ttW <u>CMS</u> measurement: 20-50% larger cross section than predicted
- ttW is the main background for ttH in multilepton
- tTH analysis closely follows the tTW analysis

$t\bar{t}W$ as a step to $t\bar{t}H$

5

ttW: current state by ATLAS

Measure tt W production cross-section in the 2 ℓ SS and 3 ℓ channels with 140 fb⁻¹ Run II dataset:

- Inclusive and fiducial cross sections
- Differential cross section of 9 observables
- Cross sections for $t\overline{t}W^{+/-}$ and their ratio

 $R = \frac{\sigma(t\bar{t}W^+)}{\sigma(t\bar{t}W^-)}$

• Charge asymmetry

$$A_{\rm C}^{\rm rel} = \frac{\sigma(t\bar{t}W^+) - \sigma(t\bar{t}W^-)}{\sigma(t\bar{t}W^+) + \sigma(t\bar{t}W^-)}$$

ATLAS CONF Note ATLAS-CONF-2023-019 29th March 2023

6

Measurement of the total and differential cross-sections of $t\bar{t}W$ production in pp collisions at 13 TeV with the ATLAS detector

The ATLAS Collaboration

Measurements of the inclusive and differential production cross-sections of a top-quarkantiquark pair in association with a *W* boson ($t\bar{t}W$) are presented. The measurements are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton–proton collision data with an integrated luminosity of 140 fb⁻¹, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive $t\bar{t}W$ production cross-section is measured to be 890 ± 80 fb, compared to the reference theoretical prediction of 722 $^{+70}_{-78}$ (scale) ± 7 (PDF) fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared to a variety of theoretical predictions which are generally in good agreement with the normalised differential cross-section results.

ttW: signal

ttW: signal regions

Signal region: split by lepton charges, lepton flavours, jet and b-jet multiplicities : 48 2ℓSS + 8 3ℓ signal regions

Signal region preselection	2ℓSS	3ℓ			
Lepton definition	TT	LTT			
Lepton $p_{\rm T}$ [GeV]	(20, 20)	(10, 20, 20)			
N _{jets}		≥ 2			
N _{b-jets}	$\geq 1 \ b^{60\%}$ or $\geq 2 \ b^{77\%}$				
$m_{\ell^{\pm}\ell^{\pm}}^{\text{SF}}$ or $m_{\ell^{+}\ell^{-}}^{\text{SF}}$ [GeV]	> 12				
$ m_{\ell^+\ell^-}^{\rm SF} - m_Z $ [GeV]	-	> 10			
$ m_{\ell\ell\ell} - m_Z $ [GeV]		> 10			
	Inclusive cross section measurement				
Lepton charge split	$(\ell^+\ell^+,\ell^-\ell^-)$	$(\ell^+\ell^-\ell^-,\ell^-\ell^+\ell^+)$			
Lepton flavour split	(µµ, еµ, µе, ее)	-			
Jet multiplicity split	(3, 4, ≥5)	(2, ≥3)			
<i>b</i> -jet multiplicity split	(1, ≥2)				
Total inclusive SRs	48	8			
	Differential cross section measurement				
Lepton charge split	$(\ell^+\ell^+,\ell^-\ell^-)$	$(\ell^+\ell^-\ell^-,\ell^-\ell^+\ell^+)$			
Number of OS-SF pairs split	-	(0, 1, 2)			
Total differential SRs	2	6			
	1				

ttW: selection at reconstruction level

Object pre-selection

Reconstruction-level

Using lowest p_T un-prescaled dilepton triggers Object preselection:

- Leptons: p_T >10 GeV, $|\eta_e| < 2.47$, $|\eta_\mu| < 2.5$; veto electrons in LAr crack region (FCLoose, Loose/LooseLH ID)
- Jets: reconstruct with PFlow anti- k_T w/ R=0.4, p_T >25 GeV; pass JVT; tag b-jets with PCT DL1r NN tagger
- "B-jet aware" overlap removal:
 - e/µ: if $\Delta R(e, \mu) < 0.1$ remove muon if Calo Tagged, else remove electron
 - e/jet: ΔR(e, jet) < 0.2 remove electron
 if jet is b-tagged, else remove jet
 - μ /jet: if ghost-matched and $\Delta R(\mu, \text{jet}) < 0.4 \rightarrow$ remove muon if jet is b-tagged, else remove jet
 - If $\Delta R(\ell, \text{jet}) < \min(0.4, 0.04 + 10/p_{T,\ell})$, remove ℓ

Reconstruction-level

- "Tight" lepton definition applied for SS leptons
 - TightLH (Medium) e(μ) ID, electron ambiguity cuts, $p_T > 20 \text{ GeV}$
 - Apply PLIV(+ECIDS) VeryTight working point
- N_{jet}≥2, N_{b-jet}≥1
 - Hybrid b-tagging, 1@60% OR ≥2@77%
- $M_{\ell\ell}$ >12 GeV in $2\ell SS$
- $M_{\ell\ell}$ >12 GeV, $|M_{\ell\ell} M_Z| > 10$ GeV (SFOS), $|M_{3\ell} - M_Z| > 10$, in 3ℓ

PLIV – Prompt Lepton Improved Veto ECIDS –Electron Charge ID selector

ttW: selection at particle level

Object pre-selection

Fiducial Particle-level

Adopt similar fiducial phase space as defined for detector-level to minimize extrapolation uncertainty

- Leptons: p_T>10 GeV, $|\eta_e| < 2.47$, $|\eta_\mu| < 2.5$; veto electrons in LAr crack region
- Jets: reconstruct with anti-k_T w/ R=0.4, p_T>25 GeV; tag b-jets containing a B-hadron
- "B-jet aware" overlap removal:
 - Skip e/µ step
 - e/jet: ΔR(e, jet) < 0.2 remove electron
 if jet has B-hadron, else remove jet
 - Skip μ/jet step (checked that impact is minor)
 - If $\Delta R(\ell, \text{jet}) < \min(0.4, 0.04 + 10/p_{T,\ell})$, remove ℓ

Event selection

Fiducial Particle-level

Adopt similar fiducial phase space as defined for detector-level to minimize extrapolation uncertainty

- Exactly 2(3) leptons, total charge ±2(±1)
 - SS lepton $p_T > 20$ GeV, OS $p_T > 10$ GeV
- $N_{jet} \ge 2$, $N_{b-jet} \ge 1$ (defined by presence of b-hadron)
- $M_{\ell\ell}$ >12 GeV in $2\ell SS$
- $M_{\ell\ell}$ >12 GeV, $|M_{\ell\ell} M_Z| > 10$ GeV (SFOS), $|M_{3\ell} - M_Z| > 10$, in 3ℓ

ttW: backgrounds

Physical background:

• ttZ, diboson (in particular WZ)

Instrumental background:

- Events with non-prompt or fake leptons: electrons from conversion and leptons from heavy flavour quark decays
- Process with charge mis-identified

ttW: backgrounds

Physical background:

• ttZ, diboson (in particular WZ)

Instrumental background:

- Events with non-prompt or fake leptons: electrons from conversion and leptons from heavy flavour quark decays
- Process with charge mis-identified

negligible for muons
 data-driven from Z→e[±]e[±]/e[±]e[∓]

ttW: backgrounds

Physical background:

• ttZ, diboson (in particular WZ)

Instrumental background:

- Events with non-prompt or fake leptons: electrons from conversion and leptons from heavy flavour quark decays
- Process with charge mis-identified

Template method: estimated using MC with their normalisation determined from data by the likelihood fit (together with the signal) using 10 control regions

ttW: template method

Physical background:

ttZ, diboson (in particular WZ)

accept conversion candidate electrons

38

[LMM][0bj]

3ℓMatC

Nevents

Instrumental background:

- Events with non-prompt or fake leptons: electrons from conversion and leptons from heavy flavour quark decays
- Process with charge mis-identified

T: VeryTight PLIV (+ECIDS) Mex: TightNotVeryTight PLIV (+ECIDS)

ttW: template method

Physical background:

ttZ, diboson (in particular WZ)

accept conversion candidate electrons

Instrumental background:

- Events with non-prompt or fake leptons: electrons from conversion and leptons from heavy flavour quark decays
- Process with charge mis-identified

32 32 VV/ttZ CRs [LMM] Two CR with different [2-3j, 1bj] [≥4j, ≥1bj] jets multiplicity and split: [+/-] with a same flavour dilepton invariant 3LVV 3^{ltt}Z SR mass near the Z peak Yields

T: VeryTight PLIV (+ECIDS) Mex: TightNotVeryTight PLIV (+ECIDS)

22SS

2^{ltt(e)}

28tt(µ)

split: [++/- -]

ttW: template method

ttW: inclusive and fiducial cross sections

 $t\bar{t}W$ as a step to $t\bar{t}H$

Top LHC France 2023 - IPHC Strasbourg 17

ttW: ratios and asymmetry

Measured:

 $\sigma(t\bar{t}W^+) = 585 {}^{+35}_{-34} \text{ (stat.) } {}^{+47}_{-44} \text{ (syst.)}$ $\sigma(t\bar{t}W^{-}) = 301 \stackrel{+28}{_{-27}} (\text{stat.}) \stackrel{+35}{_{-31}} (\text{syst.})$

 $R(t\bar{t}W) = 1.95^{+0.21}_{-0.18} \text{ (stat.)}^{+0.16}_{-0.13} \text{ (syst.)} = 1.95^{+0.26}_{-0.22} \text{ (tot.)}$

Good agreement with MC prediction:

Ratio computed with the full $\mathcal{R} = 1.81 \pm 0.03 \text{ (scale)} \pm 0.03 \text{(PDF)}$ **ATLAS** Preliminary ---- ATLAS - this result off-shell effects at NLO in QCD $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ ····· Stat. + Syst. --- Stat. only 000000 CMS result: (M_{W^+}) FxFx 553 ± 30 (stat) ± 30 (syst) fb $\sigma_{t\bar{t}W^+}$ Sherpa 343 ± 26 (stat) ± 25 (syst) fb $\sigma_{t\bar{t}W^{-}}$ 1.2 1.4 1.6 1.8 2 2.2 1.61 ± 0.15 (stat) $^{+0.07}_{-0.05}$ (syst) $\sigma_{t\bar{t}W^+}/\sigma_{t\bar{t}W^-}$ $\sigma(t\bar{t}W^+)/\sigma(t\bar{t}W^-)$

Best fit FxFx [JHEP11(2021)029] 68% CL

95% CL

ATLAS Preliminary s=13 TeV, 140 fb

400

350 σ(tłW⁻) [fb]

300

250

200

400 450 500 550 600 σ(ttw+) [fb]

ttW: uncertainties

Largest systematic uncertainties:

- ttW modelling
- ttH, four-top background normalisation
- non-prompt isolation BDT calibration

	$\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}[\%]$	$\frac{\Delta \sigma_{\rm fid}(t\bar{t}W)}{\sigma_{\rm fid}}$ [%]	$\frac{\Delta R(t\bar{t}W)}{R(t\bar{t}W)}[\%]$	$\frac{\Delta A_{\rm C}^{\rm rel}}{A_{\rm C}^{\rm rel}} [\%]$
$t\bar{t}W$ ME and PS modelling	6.0	7.0	6.0	8.0
Prompt lepton bkg. norm.	2.6	2.5	1.6	2.2
Lepton isolation BDT	2.3	2.3	1.0	1.2
Fakes/ $VV/t\bar{t}Z$ norm. (free-floated)	2.3	2.7	1.8	2.5
Non-prompt lepton bkg. modelling	1.9	1.7	2.3	3.1
Trigger	1.9	1.8	0.5	0.7
MC statistics	1.5	1.6	1.9	2.5
$t\bar{t}W$ PDF	1.5	1.4	2.1	2.8
Jet energy scale	1.4	1.9	0.8	1.1
Prompt lepton bkg. modelling	1.3	1.3	1.3	1.9
Luminosity	1.0	1.0	0.08	0.13
Charge Mis-ID	0.7	0.7	0.4	0.5
Jet energy resolution	0.5	0.6	0.7	0.31
Flavour tagging	0.28	0.33	0.5	1.0
<i>tīW</i> Scale	0.21	0.9	1.4	1.9
Electron/photon reco.	0.15	0.2	0.12	0.3
MET	< 0.10	< 0.10	0.17	0.4
Muon	< 0.10	< 0.10	< 0.10	0.4
Pile-up	< 0.10	0.25	< 0.10	0.3
Total syst.	8	10	8	10
Data statistics	5	5	10	16
Total	9	11	13	19

ttW: differential measurement

- Profile likelihood unfolding to measure differential cross-sections at particle level in the fiducial phase-space for one observable at a time
- Same background model and CR included in the fit
- Tikhonov regularisation with optimised strength for each variable
- Unfolding all channels simultaneously handles 10% migration effects

- N_{jets} Number of selected jets with $p_{\text{T}} > 25$ GeV and $|\eta| < 2.5$
- $H_{T,jets}$ Scalar sum of the transverse momenta of selected jets with $p_T > 25$ GeV and $|\eta| < 2.5$
- $H_{T,lep}$ Scalar sum of the transverse momenta of selected leptons
- $\Delta R_{lb, lead}$ Angular distance between the leading lepton and the leading *b*-tagged jet
- $|\Delta \phi_{II, SS}|$ Absolute azimuthal separation between the two leptons of the same-sign pair
- $|\Delta \eta_{\text{II, SS}}|$ Absolute pseudo-rapidity separation between the two leptons of the same-sign pair
- $M_{\rm jj, \, lead}$ Invariant mass of the two leading jets with $p_{\rm T} > 25$ GeV and $|\eta| < 2.5$

ttW: profile likelihood unfolding

ttW: differential measurement

Good agreement of unfolded data with all MC setups

• Slight tension in $\Delta \eta_{\rho\rho}$

For unfolded normalised cross-section distributions in the 2lSS

Observable	NDF	Sher	pa 2.2.10	MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Pythia8		Powheg+Herwig7	
		χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value
$N_{ m jets}$	5	2.4	0.79	4.2	0.52	2.8	0.73	2.9	0.72	2.6	0.76
$H_{\rm T,jets}$	5	0.7	0.98	1.1	0.95	0.8	0.98	1.5	0.91	2.0	0.85
$H_{\rm T,lep}$	7	3.6	0.82	3.8	0.80	3.4	0.84	3.4	0.85	3.5	0.84
$\Delta R_{lb, lead}$	7	2.0	0.96	2.4	0.93	2.6	0.92	2.6	0.92	2.5	0.93
$ \Delta \phi_{\rm ll, SS} $	7	0.6	1.00	0.7	1.00	0.9	1.00	0.8	1.00	0.9	1.00
$ \Delta\eta_{ m ll, SS} $	6	6.5	0.37	7.3	0.29	11.4	0.08	9.5	0.15	9.4	0.15
$M_{\rm jj,\ lead}$	6	4.9	0.56	2.7	0.84	7.2	0.30	9.0	0.17	10.9	0.09

 $t\bar{t}W$ as a step to $t\bar{t}H$

$t\bar{t}W vs t\bar{t}H$

- Both ttH and ttW has similar CR
- There are no final states with 4ℓ or τ in ttW, but these channels are in ttH

Channel	Selection criteria
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b-\text{jets}} \ge 1$
2ℓSS	Two same-charge (SS) very tight (T*) leptons, $p_{\rm T} > 20 \text{ GeV}$
	No τ_{had} candidates
	$m(\ell^{\pm}\ell^{\pm}) > 12 \text{ GeV}$
	13 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}$, mat. conv, int. conv.,
	split by lepton flavour, charge, jet and b-jet multiplicity
3l	Three loose (L) leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges = ± 1
	Two SS very tight (T*) leptons, $p_{\rm T} > 15 \text{ GeV}$
	One OS (w.r.t the SS pair) loose-isolated (L*) lepton, $p_{\rm T} > 10 \text{ GeV}$
	No τ_{had} candidates
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV > 10 GeV for all SFOS pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
	7 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, VV , $t\bar{t}$, mat. conv, int. conv
4 <i>l</i>	Four loose-isolated (L*) leptons; sum of light lepton charges = 0
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOS pairs
	$m(4\ell) < 115 \text{ GeV or } m(4\ell) > 130 \text{ GeV}$
	2 categories: Zenr (Z-enriched;1 or 2 SFOS pairs) or Zdep (Z-depleted; 0 SFOS pairs)
$1\ell 2\tau_{had}$	One tight (T) lepton, $p_{\rm T} > 27 \text{ GeV}$
	Two OS τ_{had} candidates
	At least one tight τ_{had} candidate
	$N_{\rm jets} \ge 3$
$2\ell SS1\tau_{had}$	2ℓ SS selection, except: One medium τ_{had} candidate
	$N_{\text{jets}} \ge 4$
$3\ell 1\tau_{\rm had}$	3ℓ selection, except:
	One medium τ_{had} candidate, of opposite charge to the total charge of the light leptons
	Two SS tight (T) leptons

Conclusion

- ttW **inclusive** cross section measurement confirms mild tension in inclusive cross section that is consistent with CMS
- The **ratio** of ttW⁺/ttW⁻ is measured to be consistent with the SM prediction, in disagreement with what is reported by CMS
- The first **differential** cross section measurements are performed on ttW and it is found that all MC generators agree with unfolded data within uncertainties
 - However, for the moment the uncertainty on the unfolded measurement is still too large to distinguish between the MC generators
- Big contribution from ttW to ttH analysis. The work is actively on-going

PLIV

- + MVA lepton isolation discriminant using track-jet variables
- Define and calibrate (with ECIDS for electrons) VeryTight and TightNotVeryTight exclusive working points
 - Tight and VeryTight WP are recommended by IFF
- p_T-dependent cuts on PLIV WP boundaries for smooth efficiency as a function of p_T

 $t\overline{t}W$ as a step to $t\overline{t}H$