Color-octet scalars and $t\bar{t}t\bar{t}$ production at LHC Runs 2 & 3: A theorist's projections

Taylor Murphy

The Ohio State University Department of Physics

16 May 2023

Based on JHEP 01 (2022) 047 in collaboration with L. M. Carpenter and M. J. Smylie ATLAS-CONF-2020-013: $\sigma(pp \rightarrow t\bar{t}t\bar{t})$

 $\sigma_{\rm SM}(pp \rightarrow t\bar{t}t\bar{t}) = (12.0 \pm 2.4) \, {\rm fb} \quad (\sqrt{s} = 13 \, {\rm TeV}, \, {\rm NLO}) \, [1]$

- ATLAS-CONF-2020-013 → ATLAS-TOPQ-2018-05 [2]: search for tttt production in multilepton final states
 4.2σ [obs] over background: closer than ever to 5σ discovery
 Signal strength μ = 2.0^{+0.8}_{-0.6}, σ(pp → tttt) = 24⁺⁷₋₆ fb
 1.7σ over SM prediction
- Recent: ATLAS-TOPQ-2021-08 [3] in same final states
 - $\hfill\square$ Discovery! 6.1 σ [obs] over background
 - □ Results held steady: $\sigma(pp \rightarrow t\bar{t}t\bar{t}) = 22.5^{+6.6}_{-5.5}$ fb, 1.8 σ over SM
- On the other hand... CMS-TOP-18-003 [4]

 $\hfill \sigma(pp \to t\bar{t}t\bar{t}) = 12.6^{+5.8}_{-5.2}\, {\rm fb}$ agrees with SM within ${<}\,1\sigma$

 So is there new physics or not? Unclear, but possible Many scenarios feature exotic resonances decaying to tt̄

ATLAS-CONF-2020-002: many jets + $E_{\rm T}^{\rm miss}$

- Meanwhile, the search for physics beyond SM particularly SUSY — continues
- ATLAS-CONF-2020-002 [5]: search for new phenomena in final states with 8–12 jets and significant missing transverse energy (E^{miss}_T)
 - $\hfill\square$ 8 signal regions (SRs) optimized for various bSM scenarios

 - $\hfill\square$ No excess over SM background reported
- Ever-improving multijet analysis enhances bSM probing power
- CONF-2020-013 $(t\bar{t}t\bar{t})$ sees excess while CONF-2020-002 $(t\bar{t}t\bar{t} + E_{T}^{miss})$ does not what models can accommodate both?
- Maybe color-octet scalars in models with **Dirac gauginos**

DIRAC GAUGINOS: A REVIEW

• In e.g. MSSM, $\tilde{g} = \tilde{g}_{\mathrm{M}} \longleftrightarrow g$ is Majorana:

$$\mathcal{L}_{\mathrm{Maj}} \supset -rac{1}{2} \, M_3 (\lambda_3^a \lambda_3^a + \mathrm{H.c.}) \equiv -M_3 \, ilde{g}_{\mathrm{M}}^a ilde{g}_{\mathrm{M}}^a$$

Supersoft operators [6] offer a different approach:

$$\mathcal{L}_{ ext{Dirac}} \supset rac{\kappa_3}{\Lambda} \int \mathrm{d}^2 heta \, \mathcal{W}'^lpha \mathcal{W}^a_{3lpha} \mathcal{O}^a + ext{H.c.}$$

 $\begin{array}{l} \square \ \mathcal{W}' = \text{field-strength superfield of hidden } \mathrm{U}(1)' \text{ sector} \\ \square \ \mathcal{O}^a = \varphi_3^a + \theta^\alpha \psi_{3\alpha}^a + \cdots = \text{new } \mathrm{SU}(3)_{\mathrm{c}} \text{ adjoint (octet) superfield} \\ \hline \text{If } \mathcal{L}_{\mathrm{Maj}} = 0, \text{ then } \tilde{g} = \tilde{g}_{\mathrm{D}} \text{ is Dirac:} \end{array}$

$$\mathcal{L}_{ ext{Dirac}} \supset -m_3 (\lambda_3^a \psi_3^a + ext{H.c.}) \equiv -m_3 \, ar{ ilde{g}}_{ ext{D}}^a ilde{g}_{ ext{D}}^a$$

R symmetry and color-octet scalars

• \mathcal{L}_{Maj} is forbidden by an *R* symmetry under which *e.g.*

$$\mathcal{W}_3
ightarrow \mathrm{e}^{\mathrm{i}R} \mathcal{W}_3 \implies g
ightarrow g \quad ext{and} \quad \lambda_3
ightarrow \mathrm{e}^{\mathrm{i}R} \lambda_3$$

- Typically SM bosons have R = 0, but Higgs R charge varies
- Supersoft operators hence Dirac gaugino masses allowed if

$$\mathcal{O}
ightarrow \mathcal{O} \implies \varphi_3
ightarrow \varphi_3 \quad ext{and} \quad \psi_3
ightarrow ext{e}^{- ext{i}R} \, \psi_3$$

• New color-octet fermion ψ_3 brings along **color-octet scalar**(s)

$$\varphi_3^a \equiv^* \frac{1}{\sqrt{2}} (O^a + \mathrm{i} o^a)$$

*Assuming no CPV s.t. O = scalar, o = pseudoscalar

SGLUON INTERACTIONS WITH SM PARTICLES

Sgluons *O*, *o* enjoy loop couplings to quarks and gluons [7]

- Available decay channels and partial widths can be modified by *R* symmetry breaking, which splits Dirac gluino + introduces novel interactions [8]
 - \Box Generally diminishes branching fractions to $t\bar{t}$!

CROSS SECTIONS & BRANCHING FRACTIONS

■ $\sigma(pp \to OO \text{ or } oo) \in [1 \text{ fb}, 1 \text{ pb}]$ with modest K factors ■ BF $(O \to t\bar{t}) \lesssim 0.30$ in natural R-symmetric models **RESULTS: BEST FIT, LIMITS, AND DISCOVERY**

Recall: ATLAS-CONF-2020-013 finds

 $\mu = 2.0^{+0.8}_{-0.6}$ and $N_{\rm obs}(t\bar{t}t\bar{t}) = 60 \implies \sim 30$ event excess

- We use MADANALYSIS 5 to compute best fit to $t\bar{t}t\bar{t}$ excess + exclusion limits at 95% CL for sgluon pair-production model
- Results provided in natural *R*-symmetric (Dirac gaugino) + generic $BF(O \text{ or } o \rightarrow t\bar{t})$ parameter spaces
- Analysis extrapolated to planned HL-LHC luminosity $\mathcal{L} = 3 \, \mathrm{ab}^{-1}$
 - $\hfill\square$ Future 95% CL limits estimated with luminosity-scaled background yield errors in case no excess is found
 - \Box Also estimate 5 σ discovery potential $S = s_{\rm HL-LHC} / \sqrt{b_{\rm HL-LHC}}$
- Multiple scenarios can be discovered or excluded in future

ATLAS-CONF-2020-002 RECAST

RESULTS IN NATURAL DG PARAMETER SPACE

Results in generic parameter space

 $10~{\rm of}~14$

CAN WE FIT THE SIGNAL SHAPE?

HL-LHC PROJECTIONS: $\sigma(pp \rightarrow t\bar{t}t\bar{t})$

HL-LHC PROJECTIONS: jets + $E_{\rm T}^{\rm miss}$

Outlook

- We have found complementary constraints on color-octet scalars from ATLAS searches for $t\bar{t}t\bar{t}$ production and events with $t\bar{t}t\bar{t} + E_{T}^{miss}$
- *R*-symmetric (Dirac gaugino) scenarios and models with broken
 R symmetry both currently viable
- At HL-LHC, these searches provide complementary discovery channels for TeV-scale color-octet scalars decaying to top quarks
 — or can rule them out
- Future hypothesis discrimination or discovery without a $t\bar{t}t\bar{t}$ signal may depend on other channels, including $g\gamma/gZ$

Outlook

- We have found complementary constraints on color-octet scalars from ATLAS searches for $t\bar{t}t\bar{t}$ production and events with $t\bar{t}t\bar{t} + E_{T}^{miss}$
- *R*-symmetric (Dirac gaugino) scenarios and models with broken
 R symmetry both currently viable
- At HL-LHC, these searches provide complementary discovery channels for TeV-scale color-octet scalars decaying to top quarks
 — or can rule them out
- Future hypothesis discrimination or discovery without a $t\bar{t}t\bar{t}$ signal may depend on other channels, including $g\gamma/gZ$

Thank you for your attention

I am happy to answer questions if we have time

BIBLIOGRAPHY (1)

- [1] R. Frederix et al., J. High Energy Phys. 02, 031.
- [2] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 80 (2020).
- [3] G. Aad et al. (ATLAS), 2303.15061 (2023).
- [4] A. M. Sirunyan *et al.* (CMS), Eur. Phys. J. C 80, 75 (2020), arXiv:1908.06463 [hep-ex].
- [5] G. Aad et al. (ATLAS), J. High Energy Phys. 2020 (10).
- [6] P. J. Fox, A. E. Nelson, and N. Weiner, J. High Energy Phys. 08, 035.
- [7] T. Plehn and T. M. P. Tait, J. Phys. G 36 (2009).
- [8] L. M. Carpenter and T. Murphy, J. High Energy Phys. 05 (079).
- [9] E. Conte, B. Fuks, and G. Serret, Comput. Phys. Commun. 184, 222–256 (2013).

Bonus material

REINTERPRETING ATLAS-CONF-2020-013

- Both searches recast for application to color-octet scalar models using MADANALYSIS 5 framework [9]
- ATLAS-CONF-2020-013 defines one inclusive SR with stringent preselection criteria:
 - $\hfill \ensuremath{\, \square \,}$ 1 SS lepton pair or \geq 3 leptons with no charge requirement
 - □ SS *e* pairs: $m_{ee} > 15 \text{ GeV}$ and $\notin [81, 101] \text{ GeV}$
 - □ OSSF lepton pairs: $m_{\ell\ell} \notin [81, 101]$ GeV
 - $\square \geq 6$ jets and ≥ 2 b-tagged anti- k_t jets with R = 0.4
 - $\hfill\square$ Total scalar transverse momentum

$$H_{\rm T} \equiv \sum_{i} \left[p_{{\rm T}i}^{\rm jet} + p_{{\rm T}i}^{\rm lepton} \right] \ge 500 \, {\rm GeV}$$

■ We apply cuts to SM signal + leading backgrounds to validate reimplementation at $\mathcal{O}(10)\%$ level

CONF-2020-013 RECAST VALIDATION

• We simulate 5×10^4 events for signal and three leading backgrounds for SM without $t\bar{t}t\bar{t}$

	ATLAS yield	MADANALYSIS 5 yield	Error [%]
$t\bar{t}W + ext{jets}$	102 ± 26	90.3	-11.5
$t\bar{t}Z + ext{jets}$	48 ± 9	37.7	-21.5
$tar{t}H + { m jets}$	38 ± 9	40.2	+5.73
$t\bar{t}t\bar{t}$ [SM]	30 ± 8	28.4	-5.48

- We achieve errors of $\mathcal{O}(10)\%$
- Lepton cuts are most stringent
- Largest errors likely statistical for smaller backgrounds

Reinterpreting ATLAS-CONF-2020-002

- Eight non-overlapping SRs with multiple ways to control SM multijet background
 - $\hfill\square$ 0 leptons in any SR
 - $\hfill 8-12\ R=0.4$ jets with $p_{\rm T} \geq 50\,{\rm GeV}$ + 1–2 b jets in some SRs
 - \square Missing transverse energy significance $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) > 5.0$
 - \Box Cumulative mass of reclustered fat (R = 1.0) jets

$$M_{\mathrm{J}}^{\Sigma}\equiv\sum_{i}m_{i}^{\mathrm{jet},R=1.0}\geq340\,\mathrm{GeV}$$
 or $500\,\mathrm{GeV}$

- ATLAS performs single-bin and multi-bin subanalyses we reimplement single-bin
- We apply cuts to gluino pair-production benchmark model and directly compare to ATLAS results, again achieving $\mathcal{O}(10)\%$ error

MA5 sgluon efficiencies

- Efficiencies statistically concurrent for scalar and pseudoscalar
- CONF-2020-002 more efficient for heavier s
gluons decaying to increasingly boosted $t\bar{t}$