

Review of single top quark physics Top LHC France 2023 - 16/05/2023

Jeremy Andrea – IPHC Strasbourg, CNRS/IN2P3 Nicolas Chanon – IP2I Lyon, CNRS/IN2P3

Introduction

- Disclaimer: this talk cannot cover all the topics
- In particular, it will not cover results obtained at Tevatron
- Focus on the LHC results

Outline:

- Single top quark cross sections: t-channel, tW, s-channel
- **Properties** related to Wtb vertex
- Top quark production associated with Z/γ bosons
- Top quark Yukawa coupling with tH process

Processes considered in this seminar

Single top quark cross sections

t-channel differential cross section

CMS - Eur. Phys. J. C 80 (2020) 370

q

q'

 W^+

 W^+

 ν

- Jet pT > 40 GeV in $|\eta|$ <4.7: **t-channel** is an **electroweak** production: features a **forward jet**
- 1 Muon (electron) pT > 26 (35) GeV.
- One b-jet in $|\eta| < 2.4$ (tracker acceptance)
 - **Define 3 categories**: signal region (2j1b), W+jet control region (2j0b) and ttbar control region (3j2b)
- QCD jet background estimated from data (revert lepton isolation)

t-channel differential cross section

CMS - Eur. Phys. J. C 80 (2020) 370

Differential cross sections:

- Unfolding detector effects to parton-level (and particle level)

- Reasonable agreement with NLO theory predictions, within the uncertainties

The **charge ratio** is sensitive to the parton content in the proton: >0.6 and increases with top pT

t-channel differential cross section 8 TeV

ATLAS - JHEP 04 (2017) 086, Eur. Phys. J. C 77 (2017) 531

ATLAS 13TeV: inclusive cross section

ATLAS 8 TeV, similar selection as CMS :

- looser pT selection for leptons (25 GeV) and jets (30 GeV)
- Similar SR definition (2j0b), W+jets VR (loose b-tagging) and ttbar VR (2j2b).
- VR are used to validate the background modeling, but are not part of the fit.
- QCD multijet => fit of missing ET distribution.
- Signal discrimination from Neural-Net.

t-channel differential cross section

ATLAS - Eur. Phys. J. C 77 (2017) 531

Fiducial and differential cross sections for top and antitop

Ratio of top to antitop: Tensions with data?

- ttbar and other background estimated from simulation, normalised by a fit to data

tW differential measurement in dilepton channel

CMS - arXiv:2208.00924, ATLAS - EPJC78(2018)186

Interference between tW NLO and ttbar LO:

- comparisons of tW NLO predictions with ttbar resonance removed using DR (diagram removal) and DS (diagram subtraction) schemes.
- need more data to conclude.

ttbar LO

Probing the interference between ttbar and tW ATLAS - PRL121(2018)152002

Dedicated measurement in WbWb phase-space to probe the interference:

- Events selected with 2 b-jets
- Good agreement with dedicated so-called "bb4I" predictions, which includes the resonances and the interferences
- Various comparisons of generators and resonance removal schemes.

Measuring s-channel process at the LHC

ATLAS - arXiv:2209.08990

- t-channel is now a background

s-channel observed at Tevatron (2014)

W

- signal to background ratio (s/b) decreases when center-of-mass energy increases
- Evidence (>3σ) obtained at

ATLAS 8 TeV and 13 TeV

Search more difficult at 13 TeV than at 8 TeV:

Inclusive cross-section [pb]

s-channel/ ttbar XS	
8 TeV	2,1 %
13 TeV	1,2 %

Advanced analysis methods need to be employed: ATLAS uses matrix element method

 \overline{b}

Wtb vertex: anomalous couplings ATLAS - JHEP12(2017)017

Wtb vertex involved both in production and decay of single top t-channel

0.2

Effective lagrangian for the anomalous coupling at Wtb vertex:

Measurement of IV_{tb}**I**

Extraction of $|fLV Vtb| (= V_L Wtb coupling)$ from cross section measurements.

$$|f_{L_V}V_{tb}| = \sqrt{\frac{\sigma_{t-ch.}}{\sigma_{t-ch}^{th}}}$$

Assumes |Vtd|,|Vts| << |Vtb|

Combinations at 8TeV (t, tW and schannels) provide the best precision.

Measurement without assumptions (tchannel measurement also measuring Vtd,Vts) lead to similar precision.

Top quark polarization ATLAS - JHEP 11 (2022) 040

15

- Measure angular distribution of the lepton
 in the top quark rest frame
- Interpret results in term of top quark
 polarization along x' and z' directions (Px'~0,
 Pz'~1)
- Extract measurement of effective field theory couplings, tensor left (aka gL and Im(gL))

P, 1.5 ATLAS Preliminary √s=13 TeV, 139 fb⁻¹ 0.5 top quark 0 top antiquark -0.5 +best Fit 68% CL stat. only 68% CL stat.+syst. Powheq-Box+Pythia8 –1.5 0.5 1.5 .5 -0.5 0 1 -1 $P_{z'}$

- Top pair + boson process is a background for single top + boson measurement **Test of SM predictions** (perturbative QCD, EW corrections)
- Probe of the top gauge boson coupling (tZ in tZq, tγ in tγq)
- Search deviations from the SM within the framework of the **effective field theory**

Single top + Z (tZq) <u>CMS - JHEP 02 (2022) 107, ATLAS - PLB 780(2018)557-577</u>

Main uncertainties: Non-prompt background, jet energy scale, lepton efficiency, final state radiation and tZq QCD scale uncertainty (modeling uncertainties relatively smaller at ATLAS)

Y man Single top + y (tyq) a CMS - Phys. Rev. Lett. 121 (2018) 221802 W 35.9 fb⁻¹ (13 TeV) **Dominant background tt+γ** 800 b Events Data CMS W 700 Stat. syst. Zy jets (dedicated CR is used) Signal (tyj) **VV**γ 600 b Misidentified photon (s- and tW-)

500

400

300

200

100

0.5

Data/Predictid

Uses the **forward jet** to increase discrimination

Estimate **non-prompt**

a fake ratio method

photon background with

Extract signal with **BDT** using kinematics (noticeably **forward jet η**)

W√iets

First evidence: significance 4.4o (3.0o expected)

 $\eta_{ ext{light-flavor je}}$

Dominated by systematics: jet energy scale, b-tagging, tγq modeling

Observation of single top + y (tyq) ATLAS-CONF-2022-013

Similar analysis strategy at ATLAS Signal extraction from fit of SR and CR (also Wγ). **Signal is very clearly visible!**

The measured fiducial parton-level cross section is $\sigma_{tq\gamma} \times \mathcal{B}(t \to \ell \nu b) = 580 \pm 19 \text{ (stat.)} \pm 63 \text{ (syst.)} \text{ fb.}$

Observation: significance 9.1σ (6.7σ expected)

Dominated by systematics: ttgamma modeling, MC stat, ttbar modeling.

Top - Higgs coupling at the LHC

tH multilepton Eur. Phys. J. C 81 (2021) 378

Data - Expectation

Conclusions

Single top cross sections

- Differential cross sections measured in t-channel and tW channel
- t-channel used for top quark property measurements
- s-channel still to be observed at the LHC

Top quark properties

- Properties of Wtb vertex (Vtb, CP-even/odd) and top quark polarization are explored
- EFT framework is gaining popularity

Top quark production associated with Z/γ bosons

- SM top quark gauge boson coupling well established
- Background for processes involving top and Higgs
- Deviations searched for with the Effective Field Theory framework

Top quark Yukawa coupling with tH process

- Top Higgs coupling measured with ttH+tH production
- tH process still to be observed

Back-up slides

top-Z couplings with Machine learning

JHEP 12 (2021) 083

Simultaneous fit of 5

coefficients in the **Effective Field theory** modifying top-Z coupling, parametrising deviations from SM.

$$L = L_{SM} + \sum_{i} \frac{a_i}{\Lambda^2} O_i + \sum_{j} \frac{b_i}{\Lambda^4} O_j + \dots$$

 WC/Λ^2 [TeV⁻²]

 c_{tZ}

 $c_{tW} c_{\phi Q}^3 c_{\phi Q}^- c_{\phi Q}^-$

Cφt

2	95% CL confidence intervals			
	Other WCs	fixed to SM	5D fit	
	Expected	Observed	Expected	Observed
	[-0.97, 0.96]	[-0.76, 0.71]	[-1.24, 1.17]	[-0.85, 0.76]
	[-0.76, 0.74]	[-0.52, 0.52]	[-0.96, 0.93]	[-0.69, 0.70]
	[-1.39, 1.25]	[-1.10, 1.41]	[-1.91, 1.36]	[-1.26, 1.43]
	[-2.86, 2.33]	[-3.00, 2.29]	[-6.06, 14.09]	[-7.09, 14.76]
	[-3.70, 3.71]	$[-21.65, -14.61] \cup [-2.06, 2.69]$	[-16.18, 10.46]	[-19.15, 10.34]

top quark mass with t-channel JHEP 12 (2021) 161

Measurement at 13 TeV:

- Main channel usually ttbar dilepton, but single top t-channel starts to be competitive

- Optimize selection with boosted decision tree
- Unbinned fit of In(mt) as discriminant variable
- Calibration of extracted mt with true mt

Flavour Changing Neutral Currents

Summary: approaching sensitivity to several BSM models

tW cross section in lepton+jets channel

- A **BDT** is trained against ttbar, exploiting the difference in jet kinematics
- tW extraction likelihood fit of the **3 regions**: 2 jets (W+jets control region), 3 jets (signal region) and 4 jets (ttbar control region)

First observation of tW process in I+jets channel (>5σ)

b

 W^{-}

Cross section: 89 ± 4 (stat) ± 12 (syst) pb

Source	Relative uncertainty (%)
Experimental	
Jet energy scale	6
b tagging efficiency	4
Luminosity	3
Lepton energy scale	2
Trigger efficiency	1
Jet energy resolution	1
b tagging misidentification rate	<1
Unclustered energy	<1
Pileup	<1
Normalization	
QCD multijet normalization	7
W+jets normalization	6
Z+jets normalization	3
Single t normalization	1
tt normalization	1
VV normalization	<1
Theoretical	
h _{damp}	4
Diagram removal/diagram subtraction	3
Underlying event tune	3
Colour reconnection model	1
Parton distribution function	1
Matrix element/parton shower matching	g 1
Final-state radiation	<1
Initial-state radiation	<1
Total systematic uncertainty	14
Statistical uncertainty	5
Total uncertainty	15

Searching for deviations with the EFT

Effective Field Theory:

- New physics at higher energy scale Λ would manifest itself at the electroweak scale as small deviations relative to the SM, that can be detected
- Construct all the **operators** involving SM fields with new interactions, respecting gauge invariance: SM-EFT
- This approach is mostly "model-independent"

$$L = L_{SM} + \sum_{i} \frac{a_i}{\Lambda^2} O_i + \sum_{j} \frac{b_i}{\Lambda^4} O_j + \dots$$

Dimension 4 operators
in the SM Lagrangian Dimension 6 operators

- Real part of Wilson coefficient is CP-conserving, imaginary part is CP-violating

Higgs boson decay

 $H \rightarrow WW$ (and $H \rightarrow ZZ$), $H \rightarrow \tau\tau$ final state: tackled with the "<u>multilepton</u>" analysis

CP violation in top coupling with tTH

CMS - arXiv:2208.02686

Why universe is there a matter/antimatter asymmetry in the Universe ?

- Skharov conditions: baryogenesis needs **CP violation** (not only)
- Amount of CP violation in the SM is not sufficient: new sources are searched for.
- The top quark impacts electroweak baryogengesis if its Yukawa coupling is CPviolating (see for instance arXiv:1512.08922) $|\tilde{r}_{\cdot}|^2$

